EXERCISE-1

(FOR SCHOOL/BOARD EXAMS)

OBJECTIVE TYPE QUESTIONS

CHOOSE THE CORRECT ONE

1. $\sqrt{2}$ is -(A) an integer (B) A rational number (C) An irrational number (D) None of these $\frac{1}{\sqrt{3}}$ is -2. (A) A rational number (B) An irrational number (C) A whole number (D) None of these $7\sqrt{3}$ is -3. (A) An irrational (B) A natural number (C) A rational number (D) None of these $5 - \sqrt{3}$ is -4. (A) An integer (B) A rational number (C) An irrational number (D) None of these Circumference of the circle Diameter of the circle 5. $\pi =$ (A) A rational number (B) A whole number (C) A positive interger (D) None of these HCF (p,q) LCM (p,q) =6. (A) p + q (B) (D) p^q (C) p q HCF (p,q,r) LCM (p,q,r) =7. (B) $\frac{qr}{p}$ (A) <u>pq</u> (C) p,q,r (D) None of these If $\sqrt[3]{32} = 2^x$ then x is equal to 8. (C) $\frac{3}{5}$ (D) $\frac{5}{3}$ (A) 5 (B) 3 0.737373...= 9. (B) $\frac{73}{100}$ (C) $\frac{73}{99}$ (A) $(0.73)^3$ (D) None of these 10. If p is a positive prime integer, then \sqrt{p} is – (A) A rational number (B) An irrational number (C) A positive integer (D) None of these 11. LCM of three numbers 28, 44, 132 is -(B) 231 (C) 462 (A) 528 (D) 924 **12.** If a is a positive integer and p be a prime number and p divides a^2 , then (A) a divides p (B) p divides a (C) p^2 divides a (D) None of these

18

13.	Evaluate $\sqrt[3]{\left(\frac{1}{64}\right)^{-2}}$						
	(A) 4	(B) 16	(C) 32	(D) 64			
14.	If $a = \frac{2+\sqrt{3}}{2-\sqrt{3}}$, $b = \frac{2}{2}$	$\frac{2-\sqrt{3}}{2+\sqrt{3}}$ then the value of	a + b is -				
	(A) 14	(B) – 14	(C) 8√3	(D) – $\sqrt{3}$			
15.	If $x = 0.\overline{16}$, then $3x$	is –					
	(A) 0.48	(B) 0.49	(C) 0.5	(D) 0.5			
16.	Find the value of x th	$\operatorname{hen} \left(\frac{3}{5}\right)^{2x-3} = \left(\frac{5}{3}\right)^{x-3}$					
	(A) $x = 2$	(B) $x = -2$	(C) $x = 1$	(D) $x = -1$			
17.	$1.\overline{3}$ is equal to -						
	(A) 3/4	(B) 2/3	(C) 4/3	(D) 2/5			
18.	The product of $4\sqrt{6}$ and $3\sqrt{24}$ is –						
	(A) 124	(B) 134	(C) 144	(D) 154			
19.	If $x = (7 + 4\sqrt{3})$, then the value of $x^2 + \frac{1}{x^2}$ is -						
	(A) 193	(B) 194	(C) 195	(D) 196			
20.	If $16 8^{n+2} = 2^m$, then m is equal to -						
	(A) n + 8	(B) 2n + 10	(C) 3n + 2	(D) 3n + 10			

OBJECTIVE					A	NSW	ER	KEY					EXERC	ISE -1	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	В	А	С	D	С	D	D	С	В	D	В	В	В	А
Que.	16	17	18	19	20		•	•							
Ans.	А	С	С	В	D										
															19

PREVIOUS YEARS BOARD (CBSE) QUESTIONS

QUESTIONS CARRYING 1 MARK

- **1.** If $\frac{p}{q}$ is a rational number (q \neq 0), what is condition of q so that the decimal representation of $\frac{p}{q}$ is terminating? [Delhi-2008]
- **2.** Write a rational number between $\sqrt{2}$ and $\sqrt{3}$.
- 3. Complete the missing entries in the following factor tree :

[Foreign-2008]

[AI-2008]

- 4. The decimal expansion of the rational number $\frac{43}{2^4 5^3}$, will terminate after how many places of decimals?
- 5. Find the [HCF LCM] for the numbers 100 and 190.
- 6. Find the [HCF LCM] for the numbers 105 and 120.
- 7. Write whether the rational number $\frac{51}{1500}$ will have a terminating decimal expansion or a non-terminating [Foreign-2009]
- 8. The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45, write the other number.
 - [Foreign-2009]

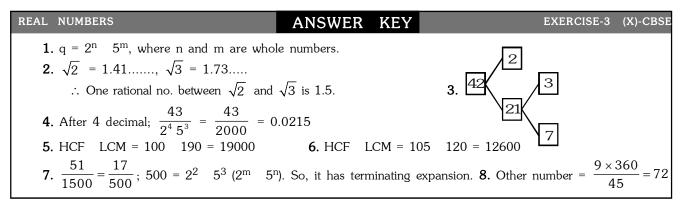
[Foreign-2009]

[Foreign-2009]

23

[Delhi-2009]

[AI-2009]


[AI-2009]

QUESTIONS CARRYING 3 MARKS

9.	Show that 5 – $2\sqrt{3}$ is an irrational number.	[Delhi-2008]
		· · ·
10.	Show that 2 – $\sqrt{3}$ is an irrational number.	[Delhi-2008]
11.	Show that 5 + $3\sqrt{2}$ is an irrational number.	[Delhi-2008]
12.	Prove that $\sqrt{3}$ is an irrational number.	[Delhi -2009/AI-2008]
13.	Use Euclid's Division Lemma to show that the square of any positive integer	s either of the form 3m or
	3m + 1 for some integer m.	[Foreign-2008/AI-2008]
14.	Prove that $\sqrt{2}$ is an irrational number.	[Delhi-2009/AI-2008]
15.	Prove that $\sqrt{5}$ is an irrational number.	[Delhi-2009/AI-2008]
16.	Prove that $3 + \sqrt{2}$ is an irrational number.	[AI-2009]
17.	Prove that 5 – $2\sqrt{3}$ is an irrational number.	[AI-2008]
18.	Prove that $3 + 5\sqrt{2}$ is an irrational number.	[AI-2009]
10		

19. Show that the square of any positive odd integers is of the form 8m + 1, for some integer m.

20. Prove that $7 + 3\sqrt{2}$ is not a rational number.

Node 5\CBSE-2011\10th\Maths/Module-1/01-Real Number