CHOOSE THE CORRECT ONE

1. A cubic polynomial is a polynomial with degree
(A) 1
(B) 3
(C) 0
(D) 2
2. A polynomial of degree 5 in x has at most
(A) 5 terms
(B) 4 terms
(C) 6 terms
(D) 10 terms
3. The coefficient of x^{3} in the polynomial $5+2 x+3 x^{2}-7 x^{3}$ is
(A) 5
(B) 2
(C) 7
(D) -7
4. The value of $P(x)=x^{2}-7 x+12$ at $x=3$ is :-
(A) 42
(B) 0
(C) 8
(D) -6
5. A linear polynomial :-
(A) may have no zero
(B) may have one zero
(C) has one and only one zero always
(D) may have more than one zero
6. The zeroes of the polynomial $\mathrm{p}(\mathrm{x})=\mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2)$ are :-
(A) 0
(B) $0,-1,-2$
(C) $0,1,-2$
(D) $0,1,2$
7. When the polynomial $x^{3}+3 x^{2}+3 x+1$ is divided by $x+1$, the remainder is :-
(A) 1
(B) 8
(C) 0
(D) -6
8. If the polynomial $2 x^{3}-3 x^{2}+2 x-4$ is divided by $x-2$, then the remainder is :-
(A) -4
(B) 4
(C) -40
(D) 2
9. The value of k for which $x-1$ is a factor of the polynomial $4 x^{3}+3 x^{2}-4 x+k$ is :-
(A) 3
(B) 0
(C) 1
(D) -3
10. The value of k for which $x+1$ is a factor of the polynomial $x^{3}+x^{2}+x+k$ is :-
(A) 0
(B) 2
(C) 1
(D) -1
11. The value of m for which $x-2$ is a factor of the polynomial $x^{4}-x^{3}+2 x^{2}-m x+4$ is :-
(A) 10
(B) -10
(C) 4
(D) 9
12. The factors of $2 x^{2}-3 x-2$ are :-
(A) $(2 x-1)(x+2)$
(B) $(2 x+1)(x-2)$
(C) $(x+1)(x-2)$
(D) $(x-1)(x+2)$
13. The factors of $12 x^{2}-x-6$ are
(A) $(3 x-2)(4 x+3)$
(B) $(12 x+1)(x-6)$
(C) $(3 x+2)(4 x-3)$
(D) $(12 x-1)(x+6)$
14. The factors of $x^{3}-2 x^{2}-13 x-10$ are :-
(A) $(x-1)(x+2)(x+5)$
(B) $(x-1)(x-2)(x-5)$
(C) $(x+1)(x-2)(x+5)$
(D) $(x+1)(x+2)(x-5)$
15. The expanded form of $(2 x-3 y-z)^{2}$ is :-
(A) $4 x^{2}+9 y^{2}+z^{2}-6 x y+3 y z-2 z x$
(B) $4 x^{2}+9 y^{2}+z^{2}+6 x y+6 y z-2 z x$
(C) $4 x^{2}+9 y^{2}+z^{2}-12 x y-6 y z-4 z x$
(D) $4 x^{2}+9 y^{2}+z^{2}-12 x y+6 y z-4 z x$
16. The expanded form of $(x+y+2 z)^{2}$ is :-
(A) $x^{2}+y^{2}+4 z^{2}+2 x y+2 y z+2 z x$
(B) $x^{2}+y^{2}+4 z^{2}+x y+2 y z+2 z x$
(C) $x^{2}+y^{2}+4 z^{2}+2 x y+4 y z+4 z x$
(D) $x^{2}+y^{2}+4 z^{2}+2 x y+2 y z+4 z x$
17. The expanded form of $\left(x+\frac{1}{3}\right)^{3}$ is :-
(A) $\mathrm{x}^{3}+\frac{1}{9}+3 \mathrm{x}^{2}+3 \mathrm{x}$
(B) $x^{3}+\frac{1}{27}+x^{2}+\frac{1}{3} x$
(C) $x^{3}+\frac{1}{27}+3 x^{2}+x$
(D) $x^{3}+\frac{1}{27}+3 x^{2}+\frac{1}{3} x$
18. $x^{3}+y^{3}+z^{3}-3 x y z$ is :-
(A) $(x+y-z)$
(B) $(x-y+z)^{3}$
(C) $(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
(D) $(x+y+z)^{3}-3 x y z$
19. $(\mathrm{a}-\mathrm{b})^{3}+(\mathrm{b}-\mathrm{c})^{3}+(\mathrm{c}-\mathrm{a})^{3}$ is equal to :-
(A) 3 abc
(B) $3 a^{3} b^{3} c^{3}$
(C) $3(a-b)(b-c)(c-a)$
(D) $[\mathrm{a}-(\mathrm{b}+\mathrm{c})]^{3}$
20. $\frac{0.83 \times 0.83 \times 0.83+0.17 \times 0.17 \times 0.17}{0.83 \times 0.83-0.83 \times 0.17+0.17 \times 0.17}$ is equal to :-
(A) 1
(B) $(0.83)^{3}+(0.17)^{3}$
(C) 0
(D) None of these

EXERCISE \# 1

Que.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	9	10
Ans.	B	C	D	A	C	D	C	B	D	C
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	A	B	C	D	D	C	B	C	C	A

1. If $\left(x+\frac{1}{x}\right)=4$, then $\left(x^{4}+\frac{1}{x^{4}}\right)$ is equal to :-
(A) 196
(B) 194
(C) 192
(D) 190
2. If $\left(x^{2}+\frac{1}{x^{2}}\right)=102$, the value of $\left(x-\frac{1}{x}\right)$ is :-
(A) 8
(B) 10
(C) 12
(D) 13
3. If $\left(x^{3}+\frac{1}{x^{3}}\right)=52$, the value of $\left(x+\frac{1}{x}\right)$ is :-
(A) 4
(B) 3
(C) 6
(D) 13
4. If $\left(x^{3}-\frac{1}{x^{3}}\right)=14$, the value of $\left(x-\frac{1}{x}\right)$ is :-
(A) 5
(B) 4
(C) 3
(D) 2
5. If x is an integer such that $\left(x+\frac{1}{x}\right)=\left(\frac{17}{4}\right)$, then the value of $\left(x-\frac{1}{x}\right)$ is :-
(A) 4
(B) $\frac{13}{4}$
(C) $\frac{15}{4}$
(D) $\frac{1}{4}$
6. If $\mathrm{t}^{2}-4 \mathrm{t}+1=0$, then the value of $\left(\mathrm{t}^{3}+\frac{1}{\mathrm{t}^{3}}\right)$ is :-
(A) 44
(B) 48
(C) 52
(D) 64
7. If $x+y=5$ and $x y=6$, the value of $\left(x^{3}-y^{3}\right)$ is :-
(A) -19
(B) 19
(C) -63
(D) 63
8. If $\frac{5^{x}}{125}=1$, then x is equal to :-
(A) 5
(B) 2
(C) 0
(D) 3
9. If $2^{x}-2^{x-1}=16$, then the value of x^{2} is :-
(A) 4
(B) 9
(C) 16
(D) 25
10. If x and y are non-zero rational unequal numbers, then $\frac{(x+y)^{2}-(x-y)^{2}}{x^{2} y-x y^{2}}$ is equal to :-
(A) $\frac{1}{x y}$
(B) $\frac{1}{x-y}$
(C) $\frac{4}{x-y}$
(D) $\frac{2}{x-y}$
11. If $\frac{x}{(b-c)(b+c-2 a)}=\frac{y}{(c-a)(c+a-2 b)}=\frac{z}{(a-b)(a+b-2 c)}$, the value of $(x+y+z)$ is :-
(A) $a+b+c$
(B) $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$
(C) 0
(D) indeterminate
12. If $(x-2)$ is a factor of $\left(x^{2}+3 q x-2 q\right)$, then the value of q is :-
(A) 2
(B) -2
(C) 1
(D) -1
13. Which of the following statements are correct ?
14. $\mathrm{x}+3$ is a factor of $\mathrm{x}^{3}+2 \mathrm{x}^{2}+3 \mathrm{x}+18 \quad$ 2. $\mathrm{x}+2$ is a factor of $\mathrm{x}^{3}+2 \mathrm{x}^{2}-\mathrm{x}-2$
15. $x+1$ is a factor of $x^{3}+x^{2}-4 x-4$
16. $x-2$ is a factor of $2 x^{3}-3 x+4$
(A) $2,3,4$
(B) $1,3,4$
(C) $1,2,4$
(D) 1, 2, 3
17. If $(x-a)$ is a factor of $\left(x^{3}-3 x^{2} a+2 a^{2} x+b\right)$, then the value of b is :-
(A) 0
(B) 2
(C) 1
(D) 3
18. If $(x+2)$ and $(x-1)$ are the factors of $\left(x^{3}+10 x^{2}+m x+n\right)$, the values of m and n are :-
(A) $\mathrm{m}=5, \mathrm{n}=-3$
(B) $\mathrm{m}=17, \mathrm{n}=-8$
(C) $\mathrm{m}=7, \mathrm{n}=-18$
(D) $\mathrm{m}=23, \mathrm{n}=-19$
19. If $\left(x^{5}-9 x^{2}+12 x-14\right)$ is divided by $(x-3)$, the remainder is :-
(A) 184
(B) 56
(C) 2
(D) 1
20. If $\left(x^{11}+1\right)$ is divided by $(x+1)$, the remainder is :-
(A) 0
(B) 2
(C) 11
(D) 12
21. The value of expression $\left(16 x^{2}+24 x+9\right)$ for $x=-\frac{3}{4}$ is :-
(A) 2
(B) 1
(C) 0
(D) -1
22. When $\left(x^{3}-2 x^{2}+p x-q\right)$ is divided by $\left(x^{2}-2 x-3\right)$, the remainder is $(x-6)$. The values of p and q are:-
(A) $\mathrm{p}=-2, \mathrm{q}=-6$
(B) $\mathrm{p}=2, \mathrm{q}=-6$
(C) $\mathrm{p}=-2, \mathrm{q}=6$
(D) $\mathrm{p}=2, \mathrm{q}=6$
23. For making $\left(x^{4}-11 x^{2} y^{2}+y^{4}\right)$ a perfect square, the expression to be added is :-
(A) $5 x^{2} y^{2}$
(B) $9 x^{2} y^{2}$
(C) $-5 x^{2} y^{2}$
(D) $7 x^{2} y^{2}$
24. The factors of $\left(x^{4}+625\right)$ are :-
(A) $\left(x^{2}-25\right),\left(x^{2}+25\right)$
(B) $\left(x^{2}+25\right),\left(x^{2}+25\right)$
(C) $\left(x^{2}-10 x+25\right),\left(x^{2}+5 x+25\right)$
(D) do not exist
25. The factors of $\left(x^{2}-8 x-20\right)$ are :-
(A) $(x+10)(x-2)$
(B) $(x-10)(x-2)$
(C) $(x-5)(x+4)$
(D) $(x+5)(x-4)$
26. The factors of $\left(x^{2}-11 x y-60 y^{2}\right)$ are :-
(A) $(x+15 y)(x-4 y)$
(B) $(x-15 y)(x+4 y)$
(C) $(15 x+y)(4 x-y)$
(D) None of these
27. The factor of $\left(216 x^{3}-64 y^{3}\right)$ are :-
(A) $8(3 x-2 y)\left(9 x^{2}+4 y^{2}-6 x y\right)$
(B) $8(3 x-2 y)\left(9 x^{2}-4 y^{2}-6 x y\right)$
(C) $8(3 x-2 y)\left(9 x^{2}+4 y^{2}\right)$
(D) $8(3 x-2 y)\left(9 x^{2}+4 y^{2}+6 x y\right)$
28. The factors of $\left(x^{3}-5 x^{2}+8 x-4\right)$ are :-
(A) $(x+2)(x-2)(x-1)$
(B) $(x+1)(x+2)(x-2)$
(C) $(x-2)^{2}(x-1)$
(D) $(x-2)^{2}(x+1)$
29. $(x+y)^{3}-(x-y)^{3}$ can be factorized as :-
(A) $2 y\left(3 x^{2}+y^{2}\right)$
(B) $2 x\left(3 x^{2}+y^{2}\right)$
(C) $2 y\left(3 y^{2}+x^{2}\right)$
(D) $2 x\left(x^{2}+3 y^{2}\right)$
30. The factors of $x^{3}-7 x+6$ are :-
(A) $x(x-6)(x-1)$
(B) $\left(x^{2}-6\right)(x-1)$
(C) $(x+1)(x+2)(x-3)$
(D) $(x-1)(x+3)(x-2)$
31. If $a+b+c=0$, then $a^{2}+b^{2}+c^{2}$ is :-
(A) $-4(a b+b c+c a)$
(B) $-2(a b+b c+c a)$
(C) 0
(D) $2 a^{2}-2 b c$
32. When $\mathrm{x}^{13}+1$ is divided by $\mathrm{x}+1$, the remainder is :-
(A) -1
(B) 0
(C) 1
(D) 2
33. When $x^{3}+2 x^{2}+2 x-4$ and $x^{3}+2 x^{2}-3 x+6$ are divided by $x-2$, the remainder are R_{1} and R_{2} respectively. Which of the following statements is true for R_{1} and R_{2} ?
(A) $\mathrm{R}_{1}=2 \mathrm{R}_{2}$
(B) $2 \mathrm{R}_{1}=\mathrm{R}_{2}$
(C) $\mathrm{R}_{1}=\mathrm{R}_{2}$
(D) $\mathrm{R}_{1}+\mathrm{R}_{2}=0$

EXERCISE \# 3

Que.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	8	9	10
Ans.	B	B	A	D	C	C	B	D	D	C
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	C	D	D	A	C	A	A	C	C	B
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	D	B	B	D	C	A	D	B	B	C

