## **Mathematics**

# Sets

### EXERCISE - I

- 1. If A and B are two sets, then  $A \cap (A \cup B)'$  is equal to-
  - (1) A

(3) ¢

- (4) none of these
- 2. If A is any set, then-
  - (1)  $A \cup A' = \phi(2) A \cup A' = U$
  - (3)  $A \cap A' = U$
- (4) none of these
- 3. If A, B be any two sets, then  $(A \cup B)'$  is equal to-
  - (1)  $A' \cup B'$
- (2)  $A' \cap B'$
- (3)  $A \cap B$
- (4)  $A \cup B$
- 4. If A and B be any two sets, then  $(A \cap B)'$  is equal to-
- (2) A' ∪ B'
- (3)  $A \cap B$  (4)  $A \cup B$
- 5. Let  $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 2, 5\}, B$ =  $\{6, 7\}$  then  $A \cap B'$  is-
  - (1) B'
- (2) A
- (3) A'
- (4) B.
- 6. If A and B are two sets, then  $A \cup B = A \cap B$  iff-
  - (1)  $A \subseteq B$
- (2)  $B \subseteq A$
- (3) A = B
- (4) none of these
- 7. Let A and B be two sets in the universal set. Then A -B equals-
  - (1)  $A \cap B'$
- (2)  $A' \cap B$
- (3)  $A \cap B$
- (4) none of these
- 8. Two sets A, B are disjoint iff-
  - (1)  $A \cup B = \phi$  (2)  $A \cap B \neq \phi$
  - (3)  $A \cap B = \phi$  (4) A B = A
- 9. Which of the following is a null set?
  - $(1) \{0\}$
  - (2)  $\{x : x > 0 \text{ or } x < 0\}$
  - (3)  $\{x : x^2 = 4 \text{ or } x = 3\}$
  - (4)  $\{x : x^2 + 1 = 0, x \in R\}$
- 10. If  $A \subseteq B$ , then  $A \cap B$  is equal to-
- (2) B
- (3) A'
- (4) B'
- 11. If A and B are any two sets, then  $A \cup (A \cap B)$  is equal to-
  - (1) A
- (2) B
- (3) A'
- (4) B'

- If A and B are not disjoint, then  $n(A \cup B)$  is equal to-12.
  - (1) n(A) + n(B)
  - (2)  $n(A) + n(B) n(A \cap B)$
  - (3)  $n(A) + n(B) + n(A \cap B)$
  - (4) n(A).n(B)
- 13. If  $A = \{2, 4, 5\}$ ,  $B = \{7, 8, 9\}$  then  $n(A \times B)$  is equal to-
  - (1) 6
- (2)9
- (3) 3
- (4) 0
- Let A and B be two sets such that n(A) = 70, 14. n(B) = 60 and  $n(A \cup B) = 110$ . Then  $n(A \cap B)$  is equal to-
  - (1) 240
- (2) 20
- (3) 100
- (4) 120
- Which set is the subset of all given sets? 15.
  - (1) {1, 2, 3, 4, ....}
- $(2) \{1\}$

 $(3) \{0\}$ 

- (4) { }
- If  $Q = \left\{ x : x = \frac{1}{v}, \text{ where } y \in N \right\}$ , then-
  - $(1) 0 \in Q$

- (2)  $1 \in Q$  (3)  $2 \in Q$  (4)  $\frac{2}{3} \in Q$
- 17.  $A = \{x : x \neq x\}$  represents-
  - $(1) \{0\}$
- (2) { }
- $(3) \{1\}$
- $(4) \{x\}$
- Which of the following statements is true? 18.
  - (1) 3  $\subseteq$  {1, 3, 5}
- (2) 3  $\in$  {1, 3, 5}
- $(3) \{3\} \in \{1, 3, 5\}$
- $(4) \{3, 5\} \in \{1, 3, 5\}$
- Which of the following is a null set? 19.
  - (1)  $A = \{x : x > 1 \text{ and } x < 1\}$
  - (2)  $B = \{x : x + 3 = 3\}$
  - (3)  $C = \{\phi\}$
  - (4)  $D = \{x : x \ge 1 \text{ and } x \le 1\}$
- 20.  $P(A) = P(B) \Longrightarrow$ 
  - (1)  $A \subseteq B$
- (2)  $B \subset A$
- (3) A = B
- (4) none of these

| ANSWER KEY (SETS) EXERCI |    |    |    |    |    |   |   |   |   |    |    | CISE | <u>- [</u> |    |    |
|--------------------------|----|----|----|----|----|---|---|---|---|----|----|------|------------|----|----|
| Que.                     | 1  | 2  | 3  | 4  | 5  | 6 | 7 | 8 | 9 | 10 | 11 | 12   | 13         | 14 | 15 |
| Ans.                     | 3  | 2  | 2  | 2  | 2  | 3 | 1 | 3 | 4 | 1  | 1  | 2    | 2          | 2  | 4  |
| Que.                     | 16 | 17 | 18 | 19 | 20 |   |   |   |   |    |    |      |            |    |    |
| Ans.                     | 2  | 2  | 2  | 1  | 3  |   |   |   |   |    |    |      |            |    |    |

## **Mathematics**

#### EXERCISE - II

#### Previous Years JEE MAIN Questions

- 1. If A, B, C be three sets such that  $A \cup B = A \cup C$  and A
  - $\cap$  B = A  $\cap$  C, then-

[Roorkee 1991]

- (1) A = B
- (2) B = C
- (3) A = C
- (4) A = B = C
- 2. Sets A and B have 3 and 6 elements respectively. What can be the minimum number of elements in A  $\cup$  B ?
  - [Roorkee 1991, C.E.T.1992]
  - (1) 3
- (2) 6
- (3) 9
- (4) 18
- 3. In a college of 300 students, every student reads 5 new spapers and every newspaper is read by 60 students.

  The number of newspapers is
  [IIT -1998]
  - (1) at least 30 (2) at most 20
  - (3) exactly 25 (4) none of these
- 4. The set of intelligent students in a class is-

[A.M.U.-1998]

- (1) a null set
- (2) a singleton set
- (3) a finite set
- (4) not a will defined collection
- 5. The shaded region in the given figure is-



[N.D.A.-2000]

- (1)  $A \cap (B \cup C)$
- (2)  $A \cup (B \cap C)$
- (3) A ∩ (B − C)
- (4) A (B  $\cup$  C)
- 6. Let n(U) = 700, n(A) = 200, n(B) = 300 and  $n(A \cap B) = 100$ , then  $n(A' \cap B') =$ 
  - (1) 400
- (2)600
- (3) 300
- (4) 200

#### [Karnatake C.E.T. 1998]

- 7. If  $A = \{1, 2, 3, 4, 5\}$ , then the number of proper subsets of A is- [Karnatake C.E.T. 1997]
  - (1) 120
- (2) 30
- (3) 31
- (4) 32

- 8. Let A and B be two sets such that n(A) = 0.16, n(B) = 0.14,  $n(A \cup B) = 0.25$ . Then  $n(A \cap B)$  is equal to[Jamia Milia Entrance Exam. 2001]
  - (1) 0.3

(2) 0.5

(3) 0.05

- (4) none of these
- 9. If  $A = \{x : x^2 5x + 6 = 0\}$ ,  $B = \{2, 4\}$ ,  $C = \{4, 5\}$ , then A  $(B \cap C)$  is-[Kerala P.E.T. 2002]
  - $(1) \{(2, 4), (3, 4)\}$
  - $(2) \{(4, 2), (4, 3)\}$
  - $(3) \{(2, 4), (3, 4), (4, 4)\}$
  - $(4) \{(2, 2), (3, 3), (4, 4), (5, 5)\}$
- **10.** If  $A = \{(x, y) : x^2 + y^2 = 25\}$  and
  - $B = \{(x, y) : x^2 + 9y^2 = 144\}$  then  $A \cap B$  contains-

#### [A.M.U. 1996, Pb. C.E.T. 2002]

- (1) one point
- (2) three points
- (3) two points
- (4) four points
- 11. A class has 175 students. The following data shows the number of students obtaining one or more subjects. Mathematics 100; Physics 70; Chemistry 40; Mathematics and Physics 30; Mathematics and Chemistry 28; Physics and Chemitry 23; Mathematics, Physics and Chemistry 18. How many students have offered Mathematics alone? [Kerala C.E.T. 2003]
  - (1) 35
- (2) 48
- (3) 60
- (4) 22
- 12. The set  $S: \{1, 2, 3, ...., 12\}$  is to be partitioned into three sets A, B, C of equal size. Thus  $A \cup B \cup C = S, A \cap B = B \cap C = A \cap C = \phi$ . The number of ways to partition S is- [AIEEE 2007]
  - $(1) 12!/3!(4!)^3$
- $(2) 12!/3!(3!)^4$
- $(3) 12!/(4!)^3$
- $(4) 12!/(3!)^4$
- 13. If A, B and C are three sets such that  $A \cap B = A \cap C$  and  $A \cup B = A \cup C$ , then :-

#### [AIEEE- 2009]

- (1) B = C
- (2)  $A \cap B = \phi$
- (3) A = B
- (4) A = C
- **14.** Let  $X = \{1, 2, 3, 4, 5\}$ . The number of different ordered pairs (Y, Z) that can be formed such that  $Y \subseteq X$ ,  $Z \subseteq X$  and  $Y \cap Z$  is empty, is :

[AIEEE - 2012]

- $(1) 5^3$
- $(2) 5^2$
- (3) 3<sup>5</sup>
- (4) 2<sup>5</sup>

| EXERCISE - II Previous Years JEE MAIN/Other Questions |   |   |   |   |   |   |   |   |   |    |    |    |    | <u>1S</u> |  |
|-------------------------------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|-----------|--|
| Que.                                                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14        |  |
| Ans.                                                  | 2 | 2 | 3 | 4 | 4 | 3 | 3 | 3 | 1 | 4  | 3  | 3  | 1  | 3         |  |