EXERCIIE- -

1. If A and B are two sets, then $A \cap(A \cup B)^{\prime}$ is equal to-
(1) A
(2) B
(3) ϕ
(4) none of these
2. If A is any set, then-
(1) $\mathrm{A} \cup \mathrm{A}^{\prime}=\phi(2) \mathrm{A} \cup \mathrm{A}^{\prime}=\mathrm{U}$
(3) $A \cap A^{\prime}=U$
(4) none of these
3. If A, B be any two sets, then $(A \cup B)^{\prime}$ is equal to-
(1) $\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
(2) $\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
(3) $A \cap B$
(4) $A \cup B$
4. If A and B be any two sets, then $(A \cap B)^{\prime}$ is equal to-
(1) $\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
(2) $A^{\prime} \cup B^{\prime}$
(3) $A \cap B$
(4) $A \cup B$
5. Let $U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{1,2,5\}, B$ $=\{6,7\}$ then $A \cap B^{\prime}$ is-
(1) B^{\prime}
(2) A
(3) A^{\prime}
(4) B.
6. If A and B are two sets, then $A \cup B=A \cap B$ iff-
(1) $A \subseteq B$
(2) $B \subseteq A$
(3) $\mathrm{A}=\mathrm{B}$
(4) none of these
7. Let A and B be two sets in the universal set. Then $A-$ B equals-
(1) $A \cap B^{\prime}$
(2) $\mathrm{A}^{\prime} \cap \mathrm{B}$
(3) $A \cap B$
(4) none of these
8. Two sets A, B are disjoint iff-
(1) $\mathrm{A} \cup \mathrm{B}=\phi(2) \mathrm{A} \cap \mathrm{B} \neq \phi$
(3) $\mathrm{A} \cap \mathrm{B}=\phi$ (4) $\mathrm{A}-\mathrm{B}=\mathrm{A}$
9. Which of the following is a null set ?
(1) $\{0\}$
(2) $\{x: x>0$ or $x<0\}$
(3) $\left\{x: x^{2}=4\right.$ or $\left.x=3\right\}$
(4) $\left\{x: x^{2}+1=0, x \in R\right\}$
10. If $A \subseteq B$, then $A \cap B$ is equal to-
(1) A
(2) B
(3) A^{\prime}
(4) B^{\prime}
11. If A and B are any two sets, then $A \cup(A \cap B)$ is equal to-
(1) A
(2) B
(3) A^{\prime}
(4) B^{\prime}
12. If A and B are not disjoint, then $n(A \cup B)$ is equal to-
(1) $n(A)+n(B)$
(2) $n(A)+n(B)-n(A \cap B)$
(3) $n(A)+n(B)+n(A \cap B)$
(4) $n(A) \cdot n(B)$
13. If $\mathrm{A}=\{2,4,5\}, \mathrm{B}=\{7,8,9\}$ then $\mathrm{n}(\mathrm{A} \times \mathrm{B})$ is equal to-
(1) 6
(2) 9
(3) 3
(4) 0
14. Let A and B be two sets such that $n(A)=70$, $n(B)=60$ and $n(A \cup B)=110$. Then $n(A \cap B)$ is equal to-
(1) 240
(2) 20
(3) 100
(4) 120
15. Which set is the subset of all given sets ?
(1) $\{1,2,3,4, \ldots$.
(2) $\{1\}$
(3) $\{0\}$
(4) $\}$
16. If $\mathrm{Q}=\left\{\mathrm{x}: \mathrm{x}=\frac{1}{y}\right.$, where $\left.\mathrm{y} \in \mathrm{N}\right\}$, then-
(1) $0 \in \mathrm{Q}$
(2) $1 \in \mathrm{Q}$
(3) $2 \in \mathrm{Q}$
(4) $\frac{2}{3} \in \mathrm{Q}$
17. $A=\{x: x \neq x\}$ represents-
(1) $\{0\}$
(2) $\}$
(3) $\{1\}$
(4) $\{x\}$
18. Which of the following statements is true ?
(1) $3 \subseteq\{1,3,5\}$
(2) $3 \in\{1,3,5\}$
(3) $\{3\} \in\{1,3,5\}$
(4) $\{3,5\} \in\{1,3,5\}$
19. Which of the following is a null set ?
(1) $A=\{x: x>1$ and $x<1]$
(2) $B=\{x: x+3=3\}$
(3) $C=\{\phi\}$
(4) $\mathrm{D}=\{\mathrm{x}: \mathrm{x} \geq 1$ and $\mathrm{x} \leq 1\}$
20. $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B}) \Rightarrow$
(1) $A \subseteq B$
(2) $\mathrm{B} \subseteq \mathrm{A}$
(3) $A=B$
(4) none of these

ANSWER KEY (SETS)
EXERCISE - I

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	2	2	2	2	3	1	3	4	1	1	2	2	2	4
Que.	16	17	18	19	20										
Ans.	2	2	2	1	3										

Enhancing ability to learn \& Express

EXERCISE - II

Previous Years JEE MAIN Questions

1. If A, B, C be three sets such that $A \cup B=A \cup C$ and A
$\cap B=A \cap C$, then- \quad [Roorkee 1991]
(1) $A=B$
(2) $\mathrm{B}=\mathrm{C}$
(3) $A=C$
(4) $\mathrm{A}=\mathrm{B}=\mathrm{C}$
2. Sets A and B have 3 and 6 elements respectively. What can be the minimum number of elements in $A \cup B$?
[Roorkee 1991, C.E.T.1992]
(1) 3
(2) 6
(3) 9
(4) 18
3. In a college of 300 students, every student reads 5 new spapers and every newspaper is read by 60 students The number of newspapers is-
[IIT -1998]
(1) at least 30 (2) at most 20
(3) exactly 25
(4) none of these
4. The set of intelligent students in a class is-
[A.M.U.-1998]
(1) a null set
(2) a singleton set
(3) a finite set
(4) not a will defined collection
5. The shaded region in the given figure is-

[N.D.A.-2000]
(1) $A \cap(B \cup C)$
(2) $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})$
(3) $\mathrm{A} \cap(\mathrm{B}-\mathrm{C})$
(4) $A-(B \cup C)$
6. Let $n(U)=700, n(A)=200, n(B)=300$ and $\mathrm{n}(\mathrm{A} \cap \mathrm{B})=100$, then $\mathrm{n}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=$
(1) 400
(2) 600
(3) 300
(4) 200

[Karnatake C.E.T. 1998]

7. If $A=\{1,2,3,4,5\}$, then the number of proper subsets of A is-
[Karnatake C.E.T. 1997]
(1) 120
(2) 30
(3) 31
(4) 32
8. Let A and B be two sets such that $n(A)=0.16, n(B)=$ $0.14, n(A \cup B)=0.25$. Then $n(A \cap B)$ is equal to[Jamia Milia Entrance Exam. 2001]
(1) 0.3
(2) 0.5
(3) 0.05
(4) none of these
9. If $A=\left\{x: x^{2}-5 x+6=0\right\}, B=\{2,4\}, C=\{4,5\}$, then

A $(\mathrm{B} \cap \mathrm{C})$ is-[Kerala P.E.T. 2002]
(1) $\{(2,4),(3,4)\}$
(2) $\{(4,2),(4,3)\}$
(3) $\{(2,4),(3,4),(4,4)\}$
(4) $\{(2,2),(3,3),(4,4),(5,5)\}$
10. If $\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}+\mathrm{y}^{2}=25\right\}$ and
$B=\left\{(x, y): x^{2}+9 y^{2}=144\right\}$ then $A \cap B$ contains-
[A.M.U. 1996, Pb. C.E.T. 2002]
(1) one point
(2) three points
(3) two points
(4) four points
11. A class has 175 students. The following data shows the number of students obtaining one or more subjects. Mathematics 100; Physics 70; Chemistry 40; Mathematics and Physics 30; Mathematics and Chemistry 28; Physics and Chemitry 23; Mathematics, Physics and Chemistry 18. How many students have offered Mathematics alone ? [Kerala C.E.T. 2003]
(1) 35
(2) 48
(3) 60
(4) 22
12. The set $S:\{1,2,3, \ldots, 12\}$ is to be partitioned into three sets A, B, C of equal size. Thus $\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}=\mathrm{S}, \mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{C}=\mathrm{A} \cap \mathrm{C}=\phi$. The number of ways to partition S is- [AIEEE - 2007]
(1) $12!/ 3!(4!)^{3}$
(2) $12!/ 3!(3!)^{4}$
(3) $12!/(4!)^{3}$
(4) $12!/(3!)^{4}$
13. If A, B and C are three sets such that $A \cap B=A \cap C$ and $A \cup B=A \cup C$, then :-
[AIEEE- 2009]
(1) $B=C$
(2) $\mathrm{A} \cap \mathrm{B}=\phi$
(3) $A=B$
(4) $A=C$
14. Let $X=\{1,2,3,4,5\}$. The number of different ordered pairs (Y, Z) that can be formed such that $\mathrm{Y} \subseteq \mathrm{X}, \mathrm{Z} \subseteq$ X and $\mathrm{Y} \cap \mathrm{Z}$ is empty, is :
[AIEEE - 2012]
(1) 5^{3}
(2) 5^{2}
(3) 3^{5}
(4) 2^{5}

EXERCISE - II

Previous Years JEE MAIN/Other Questions

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Ans.	2	2	3	4	4	3	3	3	1	4	3	3	1	3	

