

Challenging Problems-I

Properties of Operators

- **Q.1** The set $(A \cup B \cup C) \cap (A \cap B' \cap C')' \cap C'$ is equal to
- (A) $B \cap C'$
- (B) $A \cap C$
- (C) B ∪ C'
- (D) $A \cap C'$

- Q.2 The set $(A \cap B')' \cup (B \cap C)$ is equal to
 - (A) $A' \cup B \cup C$ (B) $A' \cup B$ (C) $A' \cup C'$
- (D) $A' \cap B$
- Q.3 If A and B are two sets, then $A \cap (A \cup B)$ equals
 - (A) A
- (B) B
- (C)
- (D) $A \cap B$

Challenging Problems-I

Properties of Operators

- Q.4 If X and Y are two sets and X' denotes the complement of X, then $X \cap (X \cup Y)'$ is equal to
 - (A) X
- (B) Y
- (C) **φ**
- (D) $X \cap Y$

Challenging Problems-II

Subsets & Power Set

- Q.1 Given that $N = \{1, 2, 3, ..., 100\}$, then
 - (i) Write the subset A of N, whose element are odd numbers.
 - (ii) Write the subset B of N, whose element are represented by x + 2, where $x \in N$.
- Q.2 Two finite sets have *m* and *n* elements respectively. The total number of subsets of first set is 56 more than the total number of subsets of the second set. The values of *m* and *n* respectively are.
 - (A) 7, 6
- (B) 5, 1
- (C) 6,3
- (D) 8,7
- Q.3 If X and Y are two sets and X' denotes the complement of X, then $X \cap (X \cup Y)'$ is equal to
 - (A) X
- (B) Y
- (C) **o**
- (D) $X \cap Y$

Challenging Problems-II

Subsets & Power Set

- Q.4 If $X = \{8^n 7n 1 \mid n \in \mathbb{N}\}$ and $Y = \{49n 49 \mid n \in \mathbb{N}\}$. Then

 (A) $X \subset Y$ (B) $Y \subset X$ (C) X = Y (D) $X \cap Y = \emptyset$
- Q.5 If n[P(A)] = 8, n[P(B)] = 4 then max. number of elements in $P(A \cap B)$ is
 - (A) 0
- (B) 2
- (C) 4
- (D) 8

Q.6 State true or false

$$P(A - B) = P(A) - P(B)$$

Q.7 State true or false

$$P(A \cup B) = P(A) \cup P(B)$$

Challenging Problems-II

Subsets & Power Set

- Q.8 If total number of proper subsets of set A is 63 than find n(A).
- Q.9 If $A = \{0, 1, 2, 3, 4\}$ find number of all the subsets of set A, which has two or more elements.
- Q.10 Is $n(A \cap B) = 2$ than find $n[P(A) \cap P(B)]$ and $n[P(A \cap B)]$