OBJECTIVE TYPE QUESTIONS

Choose The Correct One

1. Quadratic polynomial having zeros 1 and -2 is -
(A) $x^{2}-x+2$
(B) $x^{2}-x-2$
(C) $x^{2}+x-2$
(D) None of these
2. If $(x-1)$ is a factor of $\mathrm{k}^{2} \mathrm{x}^{3}-4 \mathrm{kx}+4 \mathrm{k}-1$, then the value of k is -
(A) 1
(B) -1
(C) 2
(D) -2
3. For what value of a is the polynomial $2 x^{4}-a x^{3}+4 x^{2}+2 x+1$ divisible by $1-2 x$?
(A) $\mathrm{a}=25$
(B) $\mathrm{a}=24$
(C) $a=23$
(D) $a=22$
4. If one of the factors of $x^{2}+x-20$ is $(x+5)$, then other factor is -
(A) $(x-4)$
(B) $(x-5)$
(C) $(\mathrm{x}-6)$
(D) $(x-7)$
5. If α, β be the zeros of the quadratic polynomial $2 x^{2}+5 x+1$, then value of $\alpha+\beta+\alpha \beta=$
(A) -2
(B) -1
(C) 1
(D) None of these
6. If α, β be the zeros of the quadratic polynomial $2-3 x-x^{2}$, then $\alpha+\beta=$
(A) 2
(B) 3
(C) 1
(D) None of these
7. Quadratic poolynomial having sum of it's zeros 5 and product of it's zeros - 14 is -
(A) $x^{2}-5 x-14$
(B) $x^{2}-10 x-14$
(C) $x^{2}-5 x+14$
(D) None of these
8. If $x=2$ and $x=3$ are zeros of the quadratic polynomial $x^{2}+a x+b$, the values of a and b respectively are :
(A) 5, 6
(B) $-5,-6$
(C) $-5,6$
(D) 5, 6
9. If 3 is a zero of the polynomial $f(x)=x^{4}-x^{3}-8 x^{2}+k x+12$, then the value of k is -
(A) -2
(B) 2
(C) -3
(D) $\frac{3}{2}$
10. The sum and product of zeros of the quadratic polynomial are -5 and 3 respectively the quadratic polynomial is equal to -
(A) $x^{2}+2 x+3$
(B) $x^{2}-5 x+3$
(C) $x^{2}+5 x+3$
(D) $x^{2}+3 x-5$
11. On dividing $x^{3}-3 x^{2}+x+2$ by polynomial $g(x)$, the quotient and remainder were $x-2$ and $4-2 x$ respectively then $g(x)$:
(A) $x^{2}+x+1$
(B) $x^{2}+x-1$
(C) $x^{2}-x-1$
(D) $x^{2}-x+1$
12. If the polynomial $3 x^{2}-x^{3}-3 x+5$ is divided by another polynomial $x-1-x^{2}$, the remainder comes out to be 3 , then quotient polynomial is -
(A) $2-\mathrm{x}$
(B) $2 \mathrm{x}-1$
(C) $3 x+4$
(D) $x-2$
13. If sum of zeros $=\sqrt{2}$, product of its zeros $=\frac{1}{3}$. The quadratic polynomial is -
(A) $3 x^{2}-3 \sqrt{2} x+1$
(B) $\sqrt{2} x^{2}+3 x+1$
(C) $3 x^{2}-2 \sqrt{3} x+1$
(D) $\sqrt{2} x^{2}+x+3$
14. If $-\frac{1}{3}$ is the zero of the cubic polynomial $f(x)=3 x^{3}-5 x^{2}-11 x-3$ the other zeros are :
(A) $-3,-1$
(B) 1,3
(C) $3,-1$
(D) $-3,1$
15. If α and β are the zeros of the polynomial $f(x)=6 x^{2}-3-7 x$ then $(\alpha+1)(\beta+1)$ is equal to -
(A) $\frac{5}{2}$
(B) $\frac{5}{3}$
(C) $\frac{2}{5}$
(D) $\frac{3}{5}$
16. Let $\mathrm{p}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ be a quadratic polynomial. It can have at most -
(A) One zero
(B) Two zeros
(C) Three zeros
(D) None of these
17. The graph of the quadratic polynomial $a x^{2}+b x+c, a \neq 0$ is always -
(A) Straight line
(B) Curve
(C) Parabola
(D) None of these
18. If 2 and $-\frac{1}{2}$ as the sum and product of its zeros respectively then the quadratic polynomial $f(x)$ is -
(A) $x^{2}-2 x-4$
(B) $4 x^{2}-2 x+1$
(C) $2 x^{2}+4 x-1$
(D) $2 x^{2}-4 x-1$
19. If α and β are the zeros of the polynomial $f(x)=16 x^{2}+4 x-5$ then $\frac{1}{\alpha}+\frac{1}{\beta}$ is equal to -
(A) $\frac{2}{5}$
(B) $\frac{5}{2}$
(C) $\frac{3}{5}$
(D) $\frac{4}{5}$
20. If α and β are the zeros of the polynomial $f(x)=15 x^{2}-5 x+6$ then $\left(1+\frac{1}{\alpha}\right)\left(1+\frac{1}{\beta}\right)$ is equal to -
(A) $\frac{13}{3}$
(B) $\frac{13}{2}$
(C) $\frac{16}{3}$
(D) $\frac{15}{2}$

OBJECTIVE							ANSWER KEY						EXERCISE -1		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	C	A	A	A	A	D	A	C	B	C	D	D	A	C	B
Que.	16	17	18	19	20										
Ans.	B	C	D	D	A										

PREVIOUS YEARS BOARD (CBSE) QUESTIONS

Questions Carrying 1 Mark

1. Write the zeros of the polynomial $\mathrm{x}^{2}+2 \mathrm{x}+1$.
[Delhi-2008]
2. Write the zeros of the polynomial, $x^{2}-x-6$.
[Delhi-2008]
3. Write a quadratic polynomial, the sum and product of whose zeros are 3 and -2 respectively. [Delhi-2008]
4. Write the number of zeros of the polynomial $y=f(x)$ whose graph is given in figure.
[AI-2008]

5. If $(x+a)$ is a factor of $2 x^{2}+2 a x+5 x+10$, find a
[Foreign-2008]
6. For what value of $k,(-4)$ is a zero of the polynomial $x^{2}-x-(2 k+2)$?
[Delhi-2009]
7. For what value of $p,(-4)$ is a zero of the polynomial $x^{2}-2 x-(7 p+3)$?
[Delhi-2009]
8. If 1 is a zero of the polynomial $p(x)=a x^{2}-3(a-1) x-1$, then find the value of a.
[AI-2009]
9. Write the polynomial, the product and sum of whose zeros $-\frac{9}{2}$ and $-\frac{3}{2}$ respectively [Foreign-2009]
10. Write the polynomial, the product and sum of whose zeros are $-\frac{13}{5}$ and $-\frac{3}{5}$ respectively. [Foreign-2009]

Questions Carrying 2 Marks

11. Find the zeros of the quadratic polynomial $6 x^{2}-3-7 x$ and verify the relationship between the zeros and the co-efficients of the polynomial.
[Delhi-2008]
12. Find the zeros of the quadratic polynomial $5 x^{2}-4-8 x$ and verify the relationship between the zeros and the coefficients of the polynomial.
[Delhi-2008]
13. Find the quadratic polynomial sum of whose zeros is 8 and their product is 12 . Hence, find the zeros of the polynomial.
[AI-2008]
14. If one zero of the polynomial $\left(a^{2}+9\right) x^{2}+13 x+6 a$ is reciprocal of the other. Find the vlaue of ' a '
[AI-2008]
15. If the product of zeros of the polynomial $a x^{2}-6 x-6$ is 4 , find the value of ' a '
[AI-2008]
16. Find all the zeros of the polynomial $x^{4}+x^{3}-34 x^{2}-4 x+120$, if two of it's zeros are 2 and -2 .
[Foreign-2008]
17. Find all the zeros of the polynomial $2 x^{4}+7 x^{3}-19 x^{2}-14 x+30$, if two of it's zeros are $\sqrt{2}$ and $-\sqrt{2}$
[Foreign-2008]
18. If the polynomial $6 x^{4}+8 x^{3}+17 x^{2}+21 x+7$ is divided by another polynomial $3 x^{2}+4 x+1$, the remainder comes out to be $(a x+b)$, find a and b.
[Delhi-2009]
19. If the polynomial $x^{4}+2 x^{3}+8 x^{2}+12 x+18$ is divided by another polynomial $x^{2}+5$, the remainder comes out to be $\mathrm{px}+\mathrm{q}$. Find the values of p and q .
[Delhi-2009]
20. Find all the zeros of the polynomial $x^{3}+3 x^{2}-2 x-6$, if two of it's zeros are $-\sqrt{2}$ and $\sqrt{2}$.[AI-2009]
21. Find all the zeros of the polynomial $2 x^{3}+x^{2}-6 x-3$, if two of it's zeros are $-\sqrt{3}$ and $\sqrt{3}$. [AI-2009]
22. If the polynomial $6 x^{4}+8 x^{3}-5 x^{2}+a x+b$ is exactly divisible by polynomial $2 x^{2}-5$, then find the value of a and b.
[Foreign-2009]

POLYNOMIALS

ANSWER KEY

EXERCISE-3 (X)-CBSE

11. $\left[\frac{-1}{3}, \frac{3}{2}\right]$ 12. $\left[\frac{-2}{5}, 2\right] \quad 13 . \mathrm{x}^{2}-8 \mathrm{x}+12$; (6, 2) 14.3 15. $\frac{-3}{2} \quad 16.2,-2,-6$ and 5 17. $\sqrt{2},-\sqrt{2},-5$ and $\frac{3}{2}$
18. $\mathrm{a}=1, \mathrm{~b}=2 \quad$ 19. $\mathrm{p}=2, \mathrm{q}=3 \quad$ 20. $-\sqrt{2}, \sqrt{2}$ and $-3 \quad$ 21. $-\sqrt{3}, \sqrt{3}$ and $-\frac{1}{2} \quad 22 . \mathrm{a}=-20, \mathrm{~b}=-25$

