Basic Concept of Chemistry

Q. 1 A 20 cm long cylinder of radius 5 cm is filled up with NH_{3} gas at STP Calculate the number of moles of NH_{3} in the cylinder.
Q. $2 \quad 20 \mathrm{~mL}$ of CO was mixed with 50 mL of oxygen and the mixture was exploded. On cooling. The resulting mixture was shaken with KOH . Find the volume of the gas that is left.
Q. 3 For the following reaction , the mass of water produced from 445 g of $\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}$ is : $2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})+163_{2}(\mathrm{~g}) \rightarrow 114 \mathrm{CO}_{2}(\mathrm{~g})+110 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(a) 490 g
(b) 495 g
(c) 445 g
(d) 890 g
Q. 4 For a reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ identify dihydrogen $\left(\mathrm{H}_{2}\right)$ as a limiting reagent in the following reaction mixtures.
(a) 56 g of $\mathrm{N}_{2}+10 \mathrm{~g}$ of H_{2}
(b) 35 g of $\mathrm{N}_{2}+8 \mathrm{~g}$ of H_{2}
(c) 14 g of $\mathrm{N}_{2}+4 \mathrm{~g}$ of H_{2}
(d) 28 g of $\mathrm{N}_{2}+6 \mathrm{~g}$ of H_{2}
Q. 5 Calculate the amount of oxygen required to produce enough CO on reaction with C which can reduce $1.6 \mathrm{~kg} \mathrm{Fe} \mathrm{O}_{2} \mathrm{O}_{3}$.
Q.6 Calculate the mass of KClO_{3} that will liberate 11.2 litre O_{2} at NTP.
(a) 38 g
(b) 46.4 g
(c) 40.8 g
Kota, Rajasthar(d) 52.4 g Enhancing ability to learn \& Express IEF MAIN, ADV I NEFT $18^{\text {TH }}, 9^{\text {TH }}, 10^{\text {TH }}$, NTSF

