1. Ten million electrons pass from point P to point Q in one micro second. The current and its direction is

(a) $1.6 \times 10^{-14} \mathrm{~A}$, from point P to point Q
(b) $3.2 \times 10^{-14} \mathrm{~A}$, from point P to point Q
(c) $1.6 \times 10^{-6} \mathrm{~A}$, from point Q to point P
(d) $3.2 \times 10^{-12} \mathrm{~A}$, from point Q to point P
2. 1 ampere current is equivalent to
(a) 6.25×10^{18} electrons s^{-1}
(b) 2.25×10^{-18} electrons s^{-1}
(c) 6.25×10^{14} electrons s^{-1}
(d) 2.25×10^{14} electrons s^{-1}
3. A current in a wire is given by the equation, $\mathrm{I}=2 \mathrm{x}^{2}-3 \mathrm{t}+1$ the charge through cross section of wire in time interval $\mathrm{t}=3 \mathrm{~s}$ to $\mathrm{t}=5 \mathrm{~s}$ is $\mathrm{t}=5 \mathrm{~s}$ is
(a) 32.33 C
(b) 43.34 C
(c) 45.5 C
(d) 42 c
4. A wire of resistance 4Ω is used to wind a coil of radius 7 cm . The wire has a diameter of 1.4 mm and the specific resistance of its material is $2 \times 10^{-2} \Omega \mathrm{~m}$. The number of turns in the coil is
(a) 50
(b) 40
(c) 60
(d) 70
5. The electrical resistance of a conductor depends upon
(a) Size of conductor
(b) Temperature of conductor
(c) Geometry of conductor
(d) All of these
6. A cylindrical rod is reformed to half of its original length keeping volume constant. If its resistance before this change were R, then the resistance after reformation of rod will be
(a) R
(b) $R / 4$
(c) $3 \mathrm{R} / 4$
(d) $\mathrm{R} / 2$
7. Three resistors $2 \Omega, 4 \Omega$ and 5Ω are combined in parallel. This combination is connected to battery of emf 20 V and negligible internal resistance. The total current drawn from the battery is
(a) 10 A
(b) 15 A
(c) 19 A
(d) 23 A
8. The voltage V and current I graphs for a conductor at two different temperatures T_{1} and T_{2} are shown in the figure. The relation between T_{1} and T_{2} is

(a) $\mathrm{T}_{1}>\mathrm{T}_{2}$
(b) $\mathrm{T}_{1}<\mathrm{T}_{2}$
(c) $\mathrm{T}_{1}=\mathrm{T}_{2}$
(d) $\mathrm{T}_{1}=\frac{1}{\mathrm{~T}_{2}}$
9. Two metal wires of identical dimensions are connected in series. If σ_{1} and σ_{2} and are the conductivities of the metals respectively, the effective conductivity of the combination is
(a) $\sigma_{1}+\sigma_{2}$
(b) $\frac{\sigma_{1}+\sigma_{2}}{2}$
(c) $\sqrt{\sigma_{1} \sigma_{2}}$
(d) $\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
10. Two cells ε_{1} and ε_{2} connected in opposition to each other as shown in figure. The cell ε_{1} is of emf 9 V and internal resistance 3Ω the cell ε_{2} is of emf 7 V and internal resistance 7Ω. The potential difference between the points A and B is

(a) 8.4 V
(b) 5.6 V
(c) 7.8 V
(d) 6.6 V
11. The resistance of a heating element is 99Ω at room temperature. What is the temperature of the element if the resistance is found to be 116Ω ?
(Temperature coefficient of the material of the resistor is

(a) 999.9 C
(b) 1005.3 C
(c) 1020.2 C
(d) 1037.1 C
12. The resistance of the wire in the platinum resistance thermometer at ice point is 5Ω and at steam point is 5.25Ω. When the thermometer is inserted in an unknown hot bath its resistance is found to be 5.5Ω. The temperature of the hot bath is
(a) $100^{\circ} \mathrm{C}$
(b) $200^{\circ} \mathrm{C}$
(c) $300^{\circ} \mathrm{C}$
(d) $350^{\circ} \mathrm{C}$
13. A heater coil is rated $100 \mathrm{~W}, 200 \mathrm{~V}$. It is cut into two identical parts. Both parts are connected together in parallel, to the same source of 200 V . The energyl liberated per second in the new combination is
(a) 100 J
(b) 200 J
(c) 300 J
(d) 400 J
14. A wire of resistance 12 ohms per meter is bent to form a complete circle of radius 10 cm . The resistance between its two diametrically opposite points, A and B as shown in the figure is

(a) 3Ω
(b) $6 \pi \Omega$
(c) 6Ω
(d) $0.6 \pi \Omega$
15. The total resistance in the parallel combination of three resistance $9 \Omega, 7 \Omega$, and 5Ω is
(a) 1.22Ω
(b) 2.29Ω
(c) 4.22Ω
(d) 2.02Ω
16. The equivalent resistance between \mathbf{A} and \mathbf{B} for the circuit shown in figure is

(a) 13.1Ω
(b) 15.1Ω
(c) 17.1Ω
(d) 19.1Ω
17. Equivalent resistance of the given network is

(a) 28
(b) 18
(c) 26
(d) 25
18. In the given circuit the potential at point B is zero, the potential at points A and D will be

(a) $\mathrm{V}_{\mathrm{a}}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=9 \mathrm{~V}$
(b) $\mathrm{V}_{\mathrm{A}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=4 \mathrm{~V}$
(c) $\mathrm{V}_{\mathrm{A}}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}$
(d) $\mathrm{V}_{\mathrm{A}}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}$
19. The potential difference between A and B as shown in figure is

(a) 1 V
(b) 2 V
(c) 3 V
(d) 4 V
20. Three resistance, $2 \Omega, 4 \Omega, 5 \Omega$, are combined in series and this combination is connected to a battery of 12 V emf and negligible internal resistance. The potential drop across these resistances are
(a) $(5.45,4.36,2.18) \mathrm{V}$
(b) $(2.18,5.45,4.36) \mathrm{V}$
(c) $(4.36,2.18,5.45) \mathrm{V}$
(d) $(2.18,4.36,5.45) \mathrm{V}$
21. If voltage across a bulb rated 220 V 100 W drops by 2.5% of its rated value, the percentage of the rated value by which the power would decrease is $\%$
22. An infinite ladder network of resistance is constructed with 1Ω and 2Ω resistance as shown in figure. The 6 V battery between A and B has negligible internal resistance. The equivalent resistance between A and B is

23. The equivalent resistance of series combination of Two equal resistors is S. If they are joined in parallel, the total resistance if P. The relation between S and P is given by $S=n P$. Then the minimum possible value of n is
24. Five equal resistances of 10Ω are connected between A and B as shown in figure. The resultant resistance is

25. Four resistors are connected as shown in the figure $A 6 \mathrm{~V}$ battery of negligible resistance is connected across terminals A and C. The potential difference across terminals B and D will be

26. A solid $A B$ has the $N a C l$ structure. If radius of cation A^{+} is 120 pm , calculate the maximum possible value of the radius of the anion B^{-}
(a) 240 pm
(b) 280 pm
(c) 270 pm
(d) 290 pm
27. $C s B r$ has a (bcc) arrangement and its unit cell edge length is 400 pm . Calculate the interionic distance in $C s C l$.
(a) 346.4 pm
(b) 643 pm
(c) 66.31 pm
(d) 431.5 pm
28. An ionic compound AB has ZnS type of structure, if the radius of A^{+}is 22.5 pm , then the ideal radius of B^{-}is
(a) 54.35 pm
(b) 100 pm
(c) 145.16 pm
(d) None
29. In a cubic packed structure of mixed oxides, the lattice is made up of oxide ions, one fifth of tetrahedral voids are occupied by divalent $\left(\mathrm{X}^{++}\right)$ions while one- half of the octahedral voids are occupied by trivalent ions $\left(\mathrm{Y}^{+3}\right)$, then the formula of the oxide is.
(a) $\mathrm{XY}_{2} \mathrm{O}_{4}$
(b) $\mathrm{X}_{2} \mathrm{YO}_{4}$
(c) $\mathrm{X}_{4} \mathrm{Y}_{5} \mathrm{O}_{10}$
(d) $\mathrm{X}_{5} \mathrm{Y}_{4} \mathrm{O}_{10}$
30. A substance has density of $2 \mathrm{~kg} \mathrm{dm}^{-3} \&$ it crystallizes to fcc lattice with edge length equal to 700 pm , then the molar mass of the substance is
(a) $75.50 \mathrm{gmmol}^{-1}$
(b) $103.30 \mathrm{gmmol}^{-1}$
(c) $56.02 \mathrm{gmmol}^{-1}$
(d) $65.36 \mathrm{gmmol}^{-1}$
31. The anions (a) form hexagonal closest packing and the cations(c) occupy only $2 / 3$ of octahedral holes. The simplest formula of the ionic compound is -
(a) $C A$
(b) $\mathrm{C}_{3} \mathrm{~A}_{2}$
(c) $\mathrm{C}_{4} \mathrm{~A}_{3}$
(d) $\mathrm{C}_{2} \mathrm{~A}_{3}$
32. An elemental crystal has a density of $8570 \mathrm{~kg} / \mathrm{m}^{3}$. The packing efficiency is 0.68 . The closest distance of approach between neighbouringatom is $2.86 \AA$. What is the mass of one atom approximately?
(a) 29 amu
(b) 39 amu
(c) 63 amu
(d) 93 amu
33. If Z is the number of atoms in the unit cell that represents the closest packing sequence $A B C A B C \ldots$, the number of tetrahedral voids in the unit cell is equal to -
(a) Z
(b) $2 Z$
(c) $\frac{Z}{2}$
(d)
$\frac{Z}{4}$
34. In a solid ' $A B$ ' having the $N a C l$ structure, ' A ' atoms occupy the corners of the cubic unit cell. If all the face centred atoms along one of the axes are removed, then the resultant stoichiometry of the solid is -
(a) AB_{2}
(b) $\mathrm{A}_{2} \mathrm{~B}$
(c) $\mathrm{A}_{4} \mathrm{~B}_{3}$
(d) $\mathrm{A}_{3} \mathrm{~B}_{4}$
35. When heated above $916^{\circ} \mathrm{C}$, iron changes its bcc crystalline form to foc without the change in the radius of atom. The ratio of density of the crystal before heating and after heating is [At. wt. $\mathrm{Fe}=56$]
(a) 1.069
(b) 0.918
(c) 0.725
(d) 1.231
36. The crystal system for which $a \neq b \neq \mathrm{c}$ and $\alpha=\beta=\gamma=90^{\circ}$ is said to be :
(a) Triclinic
(b) Tetragonal
(c) Cubic
(d) Orthorhombic
37. A metal crystallizes in a body centered cubic lattice (bcc) with the edge of the unit cell $5.2 \AA$. The distance between the two nearest neighbour is
(a) $10.4 \AA$
(b) $4.5 \AA$
(c) $5.2 \AA$
(d) $9.0 \AA$
38. Consider a Body Centered Cubic(bcc) arrangement, let $\mathrm{d}_{\mathrm{e}}, \mathrm{d}_{\mathrm{fd}}, \mathrm{d}_{\mathrm{bd}}$ be the distances between successive atoms located along the edge, the face-diagonal, the body diagonal respectively in a unit cell.Their order is given by:
(a) $\mathrm{d}_{\mathrm{e}}<\mathrm{d}_{\mathrm{fd}}<\mathrm{d}_{\mathrm{bd}}$
(b) $\mathrm{d}_{\mathrm{fd}}>\mathrm{d}_{\mathrm{bd}}>\mathrm{d}_{\mathrm{e}}$
(c) $\mathrm{d}_{\mathrm{fd}}>\mathrm{d}_{\mathrm{e}}>\mathrm{d}_{\mathrm{bd}}$
(d) $d_{b d}>d_{e}>d_{f d}$
39. In zinc blende structure the coordination number of Zn^{2+} ion is
(a) 2
(b) 4
(c) 6
(d) 8
40. Strontium chloride has a fluorite structure, which of the following statement is true for the structure of strontium chloride?
(a) The strontium ions are in a body-centered cubic arrangement
(b) The strontium ions are in a face-centered cubic arrangement
(c) Each chloride ion is at the center of a cube of 8 strontium ions
(d) Each strontium ion is at the center of a tetrahedron of 4 chloride ions
41. Given an alloy of Cu, Ag and Au in which Cu atoms constitute the CCP arrangement.If the hypothetical formula of the alloy
is $\mathrm{Cu}_{4} \mathrm{Ag}_{3} \mathrm{Au}$. What are the probable locations of Ag and Au atoms.
(a) Ag - all Tetrahedral voids; Au - all Octahedral voids
(b) $\mathrm{Ag}-3 / 8$ th Tetrahedral voids; $\mathrm{Au}-1 / 4$ th Octahedral voids
(c) $\mathrm{Ag}-1 / 2$ Octahedral voids; $\mathrm{Au}-1 / 2$ Tetrahedral voids
(d) Ag - all Octahedral voids; Au - all tetrahedral voids
42. NaCl shows Schottky defects and AgCl Frenkel defects. Their electrical conductivity is due to :
(a) Motion of ions and not the motion of electrons
(b) Motion of electrons and not the motion of ions
(c) Lower co-ordination number of NaCl
(d) Higher co-ordination number of AgCl
43. Zinc Oxide, white in colour at room temperature, acquires yellow colour on heating due to:
(a) Zn being a transition element
(b) Paramagnetic nature of the compound
(c) Trapping of electrons at the site vacated by Oxide ions
(d) Both (a) \& (b)
44. An element X (At. wt. $=80 \mathrm{~g} / \mathrm{mol}$) having fce structure, calculate no. of unit cells in 8 gm of X :
(a) $0.4 \times \mathrm{N}_{\mathrm{A}}$
(b) $0.1 \times \mathrm{N}_{\mathrm{A}}$
(c) $4 \times \mathrm{N}_{\mathrm{A}}$
(d) $\mathrm{N}_{\mathrm{A}} / 40$
45. Which of the following solids are not correctly matched with the bonds found between the constituent particles:
(a) Solid CO_{2} : Vanderwaal's
(b) Graphite : Covalent and Vanderwaal
(c) Grey Cast Iron : Ionic
(d) Metal alloys: Ions-delocalised electrons
46. In an ionic solid $r^{(+)}=1.6 \AA$ and $r^{(-)}=1.864 \AA$. Use the radius ratio rule to determine the edge length of the cubic unit cell in \AA.
47. A compound $A B$ has a rock type structure with
$A: B=1: 1$. The formula weight of $A B$ is 6.023 y amu and the closest $A-B$ distance is $y^{1 / 3} \mathrm{~nm}$. Determine the density of lattice in $\mathrm{kg} / \mathrm{m}^{3}$
48. A molecule $\mathrm{A}_{2} \mathrm{~B}$ (mol. wt. 166.4) occupies triclinic lattice with $\mathrm{a}=5 \AA, \mathrm{~b}=8 \AA$ and $\mathrm{c}=4 \AA$. If density of AB_{2} is $5.2 \mathrm{gcm}^{-3}$ calculate the number of molecules present in one unit cell -
49. The radius of Ag^{+}ion is 126 pm while that of I^{-}ion is 216 pm . The co-ordination number of Ag in AgI is
50. The coordination number of a metal crystallized in a B.C.C. structure is
51. If $\cos ^{-1}\left(\frac{x}{a}\right)+\cos ^{-1}\left(\frac{y}{b}\right)=\alpha$, then $\frac{x^{2}}{a^{2}}-\frac{2 x y}{a b} \cos \alpha+\frac{y^{2}}{b^{2}}=$
(a) $\sin ^{2} \alpha$
(b) $\cos ^{2} \alpha$
(c) $\tan ^{2} \alpha$
(d) $\cot ^{2} \alpha$
52. $2\left(\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3\right)$ is equal to
(a) $\pi / 4$
(b) $\pi / 2$
(c) π
(d) 2π
53. If $\tan ^{-1} \frac{\sqrt{1-x^{2}}-1}{x}=4$, then
(a) $x=\tan 2$
(b) $x=\tan 4$
(c) $x=\tan (1 / 4)$
(d) $x=\tan 8$
54. The values of x satisfying $\tan \left(\sec ^{-1} x\right)=\sin \left(\cos ^{-1} \frac{1}{\sqrt{5}}\right)$ is/are
(a) $\frac{\sqrt{5}}{3}$
(b)

$$
\frac{3}{\sqrt{5}}
$$

(c) $-\frac{\sqrt{5}}{3}$
(d)

$$
-\frac{3}{\sqrt{5}}
$$

55. Which of the following is negative
(a) $\cos \left(\tan ^{-1}(\tan 4)\right)$
(b) $\sin \left(\cot ^{-1}(\cot 4)\right)$
(c) $\tan \left(\cos ^{-1}(\cos 5)\right)$
(d) $\cot \left(\sin ^{-1}(\sin 4)\right)$
56. Which of the following identities does not hold?
(a) $\sin ^{-1} x=\cot ^{-1}\left[\frac{\sqrt{\left(1-x^{2}\right)}}{x}\right] ; 0<x \leq 1$
(b) $\sin ^{-1} \mathrm{x}=\cot ^{-1}\left[\frac{\sqrt{\left(1-\mathrm{x}^{2}\right)}}{\mathrm{x}}\right] ;-1 \leq \mathrm{x}<0$
(c) $\sin ^{-1} x=\cos ^{-1} \sqrt{\left(1-x^{2}\right)} ; 0 \leq x \leq 1$
(d) $\sin ^{-1} x=1-\sin ^{-1}(-x) ;-1 \leq x \leq 1$
57. If $\frac{1}{\sqrt{2}}<x<1$ then
$\cos ^{-1} \mathrm{x}+\cos ^{-1}\left(\frac{\mathrm{x}+\sqrt{1-\mathrm{x}^{2}}}{\sqrt{2}}\right)$ is equal to
(a) $2 \cos ^{-1} x-\frac{\pi}{4}$
(b) $2 \cos ^{-1} x$
(c) $\frac{\pi}{4}$
(d) 0
58. Set of values of x satisfying $\cos ^{-1} \sqrt{x}>\sin ^{-1} \sqrt{x}$
(a) $\left(0, \frac{1}{2}\right)$
(b) $\left[0, \frac{1}{2}\right)$
(c) $\left(\frac{1}{2}, 1\right)$
(d) $\left(\frac{1}{2}, 1\right]$
59. Which one of the following is correct?
(a) $\tan 1>\tan ^{-1}$
(b) $\tan 1<\tan ^{-1} 1$
(c) $\tan 1=\tan ^{-1} 1$
(d) None of these
60. $\cos ^{-1}\left\{\frac{1}{2} x^{2}+\sqrt{1-x^{2}} \sqrt{1-\frac{x^{2}}{4}}\right\}=\cos ^{-1} \frac{x}{2}-\cos ^{-1} x$ holds if -
(a) $|x| \leq 1$
(b) $x \in R$
(c) $0 \leq x \leq 1$
(d) $-1 \leq x \leq 0$
61. If minimum value of $\left(\sin ^{-1} x\right)^{2}+\left(\cos ^{-1} x\right)^{2}$ is $\frac{\pi^{2}}{k}$, then the value of k is
(a) 4
(b) 6
(c) 8
(d) None of these
62. All x satisfying the inequality $\left(\cot ^{-1} x\right)^{2}-7\left(\cot ^{-1} x\right)+10>0$, lie in the interval:
(a) $(-\infty, \cot 5) \cup(\cot 4, \cot 2)$
(b) $(\cot 5, \cot 4)$
(c) $(\cot 2, \infty)$
(d) $(-\infty, \cot 5) \cup(\cot 2, \infty)$
63. Considering only the principal values of inverse functions, the set $A=\left\{x: \tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}\right\}$
(a) is an empty set
(b) Contains more than two elements
(c) Contains two elements
(d) is a singleton
64. $3 \sin ^{-1} \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}-4 \cos ^{-1} \frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}+2 \tan ^{-1} \frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}=\frac{\pi}{3}$ then principal $\mathbf{x}=$
(a) $\sqrt{3}$
(b) $\frac{1}{\sqrt{3}}$
(c) 1
(d) None of these
65. $\sin ^{-1} \sin 22+\cos ^{-1} \cos 33+\tan ^{-1} \tan 44=$
(a) $55-17 \pi$
(b) $16 \pi-48$
(c) $45-18 \pi$
(d) None of these
66. The value of $\sin ^{-1}\left(\frac{12}{13}\right)-\sin ^{-1}\left(\frac{3}{5}\right)$ is equal to :
(a) $\pi-\sin ^{-1}\left(\frac{63}{65}\right)$
(b) $\pi-\cos ^{-1}\left(\frac{33}{65}\right)$
(c) $\frac{\pi}{2}-\sin ^{-1}\left(\frac{56}{65}\right)$
(d) $\frac{\pi}{2}-\cos ^{-1}\left(\frac{9}{65}\right)$
67. If $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$ where $-1 \leq x \leq 1,-2 \leq y \leq 2 \quad, x \leq \frac{y}{2}$ then for all $x, y, 4 x^{2}-4 x y \cos \alpha+y^{2}$ is equal to
(a) $4 \sin ^{2} \alpha-2 x^{2} y^{2}$
(b) $4 \cos ^{2} \alpha+2 x^{2} y^{2}$
(c) $4 \sin ^{2} \alpha$
(d) $2 \sin ^{2} \alpha$
68. If $\alpha=\sin ^{-1}\left(\frac{4}{5}\right), \beta=\cot ^{-1}(3)$, where $0<\alpha, \beta<$ $\frac{\pi}{2}$, then $\alpha-\beta$ is equal to :
(a) $\sin ^{-1}\left(\frac{9}{5 \sqrt{10}}\right)$
(b) $\tan ^{-1}\left(\frac{9}{14}\right)$
(c) $\cos ^{-1}\left(\frac{9}{5 \sqrt{10}}\right)$
(d) $\tan ^{-1}\left(\frac{9}{5 \sqrt{10}}\right)$
69. $\tan ^{-1} n, \tan ^{-1}(\mathrm{n}+1)$ and $\tan ^{-1}(\mathrm{n}+2), \mathrm{n} \in \mathrm{N}$, are

70. If $\sin ^{-1}(\sin 5)>x^{2}-4 x$, then the number of possible integral values of x is
71. Greatest value of $\tan ^{-1}\left(\frac{1-x}{1+x}\right) \forall x \in[0,1]$ is $\frac{\pi}{k}$ then k equals
72. If $\sum_{i=1}^{10} \cos ^{-1} x_{i}=0$ then $\sum_{i=1}^{10} x_{i}$ is
73. If the range of m for which the equation $\operatorname{cosec}^{-1} x=m x$ has exactly two solutions is $\left(0, \frac{\lambda \pi}{10}\right]$ then λ is equal to

1. Answer: c

Solution

(c): Here, number of electron, $\mathrm{n}=10000000=10^{7}$ Total
$\mathrm{Q}=$ ne [where $\left.\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right]$
$\mathrm{Q}=$ ne (where $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
$=10^{7} \times 1.6 \times 10^{-19}$
$=1.6 \times 10^{-12} \mathrm{C}$
Time taken by ten million electrons to pass from point P to
point Q is, $\mathrm{t}=1 \mu \mathrm{~s}=10^{-6} \mathrm{~S}$
The current,
$\mathrm{I}=\frac{\mathrm{Q}}{\mathrm{t}}=\frac{1.6 \times 10^{-12}}{10^{-6}}=1.6 \times 10^{-6} \mathrm{~A}$
Since the direction of the current is always opposite to the
direction of flow of electrons. Therefore due to flow of
direction of flow of electrons. Therefore due to flow of electrons from point P to point Q the current will flow from electrons from poin
point Q to pint. P .

2. Answer: a

Solution

(a): $\mathrm{Q}=\mathrm{It}$

Also $\mathrm{Q}=\mathrm{ne}\left[\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right]$
\therefore ne $=\mathrm{It}$
or $(; \mathrm{k}) \mathrm{n}=\frac{\mathrm{It}}{\mathrm{e}}=\frac{1 \mathrm{~A} \times 1 \mathrm{~s}}{1.6 \times 10^{-19}}$
$=6.25 \times 10^{18}$ electrons s^{-1}

3. Answer: b

Solution

(b): As $I=\frac{d Q}{d t}$
$d Q=I d t$
$d Q=\left(2 t^{2}-3 t+1\right) d t$
$\int d Q=\int_{t=3}^{t=5}\left(2 t^{2}-3 t+1\right) d t$
$\mathrm{Q}=\left[\frac{2 \mathrm{t}^{3}}{3}-\frac{3 \mathrm{t}^{2}}{2}+\mathrm{t}\right]_{3}^{5}$
$=\left[\frac{2}{3}\left(5^{3}-3^{3}\right)-\frac{3}{2}\left(5^{2}-3^{2}\right)+(5-3)\right]$
$=\left[\frac{2}{3}(125-27)-\frac{3}{2}(25-9)+2\right]=43.34 \mathrm{C}$

4. Answer: d

Solution

(d): Let n be the number of turns in the coil. Then total length
of wire used, 1
of wire used, 1
$=2 \pi \mathrm{r} \times \mathrm{n}=2 \pi \times 710^{-2} \times \mathrm{n}$
Total resistance, $\mathrm{R}=\rho \frac{1}{\mathrm{~A}}$
or, $4=\frac{2 \times 10^{-7} \times 2 \pi \times 10^{-2} \times n}{\pi\left(0.7 \times 10^{-3}\right)^{2}}$
$\therefore \mathrm{n}=70$

6. Answer: b

Solution

(b): The resistance of rod before reformation
$\mathrm{R}_{1}=\mathrm{R}=\frac{\mathrm{\rho l}_{1}}{\pi \mathrm{r}_{1}^{2}} \quad\left[\therefore \mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}}=\frac{\rho \mathrm{l}}{\pi \mathrm{r}^{2}}\right]$
Now the rod is reformed such that,
$1_{2}=\frac{1_{1}}{2}$
$\therefore \pi r_{1}^{2} l_{1}=\pi r_{2}^{2} 1_{2} \quad(\because$ Volume remains constant,
or $\frac{r_{1}^{2}}{r_{2}^{2}}=\frac{1_{2}}{1_{1}}$
Now the resistance of the rod after reformation $\mathrm{R}_{2}=\frac{\rho_{2}}{\pi \mathrm{r}_{2}^{2}}$
$\therefore \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\rho \mathrm{l}_{1}}{\pi \mathrm{r}_{1}^{2}} / \frac{\rho \mathrm{l}_{1}}{\pi \mathrm{r}_{2}^{2}}=\frac{\mathrm{l}_{1}}{1_{2}} \times \frac{\mathrm{r}_{2}^{2}}{\mathrm{r}_{1}^{2}}$
or, $\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{l}_{1}}{l_{2}} \times \frac{\mathrm{l}_{1}}{l_{2}}=\left(\frac{\mathrm{l}_{1}}{l_{2}}\right)^{2}=(2)^{2} \quad$ (using (i))
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=4$
$\therefore \mathrm{R}_{2}=\frac{\mathrm{R}}{4}$

7. Answer: c

Solution

(c): Potential of 20 V will be same across each resistance current.

$\mathrm{I}_{1}=\frac{\mathrm{V}}{\mathrm{R}_{1}}=\frac{20}{2}=10 \mathrm{~A}$
$\mathrm{I}_{2}=\frac{\mathrm{V}}{\mathrm{R}_{2}}=\frac{20}{4}=5 \mathrm{~A}$
$\mathrm{I}_{3}=\frac{\mathrm{V}}{\mathrm{R}_{3}}=\frac{20}{5}=4 \mathrm{~A}$
\therefore Total current drawn circuit,
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=10+5+4=19 \mathrm{~A}$

8. Answer:

Solution

(a):

The slope of $\mathrm{V}-\mathrm{I}$ graph gives the resistance of a conductor at a given temperature.
From the graph, T_{1} is greater than at temperature T_{2}. As the resistance of a conductor is more at higher temperature and less at lower temperature, hence $T_{1}>T_{2}$.

5. Answer: d

Solution

(d): The electrical resistance of a conductor is depend upon all factors size, temperature and geometry of conductor.

9. Answer: d

Solution

(d): Resistance of a wire in terms of conductivity $(\sigma$) is given
$\mathrm{R}=\frac{1}{\sigma} \frac{1}{\mathrm{~A}}$
where 1 is the length and A is the area of cross - section of wire respectively.
As the wires are onnected in series,
$\therefore \mathrm{R}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{R}_{2}$
$\frac{21}{\sigma_{s} A}=\frac{1}{\sigma_{1} A}+\frac{1}{\sigma_{2} A}$
$\frac{2}{\sigma_{s}}=\frac{1}{\sigma_{1}}+\frac{1}{\sigma_{2} \mathrm{~A}}+\frac{1}{\sigma_{2} \mathrm{~A}}$
where σ_{s} is the effective conductivity
$\frac{2}{\sigma_{\mathrm{s}}}=\frac{1}{\sigma_{1}}+\frac{1}{\sigma_{2}}=\frac{\sigma_{2}+\sigma_{1}}{\sigma_{1} \sigma_{2}}$
$\sigma_{s}=\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
10. Answer: a

Solution

(a): $\mathrm{I}=\frac{\Delta \varepsilon}{\mathrm{r}_{1}+\mathrm{r}_{2}}=\frac{9-7}{3+7}=\frac{2}{10}=0.2 \mathrm{~A}$

Potential difference across
$\varepsilon_{1}=9-0.2 \times 3=9-0.6$
$=8.4 \mathrm{~V}$
Potential difference across

$$
\begin{aligned}
\varepsilon_{2} ; \mathrm{V}_{\mathrm{AB}} & =\varepsilon_{2}+0.2 \mathrm{r}_{2} \\
& =7+0.2 \times 7 \\
& 7+1.4=8.4 \mathrm{~V}
\end{aligned}
$$

11. Answer: d

Solution

(d): Here, $\mathrm{R}_{0}=99 \Omega, \mathrm{~T}_{0}=27^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{T}}=116 \Omega$
$\alpha=1.710^{-4} \mathrm{C}^{-1}$
$\therefore \mathrm{R}_{\mathrm{T}}=\mathrm{R}_{0}\left[\left(1+\alpha\left(\mathrm{T}-\mathrm{T}_{0}\right)\right]\right.$
$\therefore \frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{R}_{0}}-1=\alpha\left(\mathrm{T}-\mathrm{T}_{0}\right) \Rightarrow \frac{116}{99}-1=\alpha\left(\mathrm{T}-\mathrm{T}_{0}\right)$
$\mathrm{T}-\mathrm{T}_{0}=\frac{1}{\alpha}\left[\frac{116-99}{99}\right]=\frac{17}{99 \mathrm{o}}=\frac{1}{1.7 \times 10^{-4}} \times \frac{17}{99}$
$\therefore \mathrm{T}-\mathrm{T}_{0}=\frac{10^{5}}{99}=1010.10{ }^{\circ} \mathrm{C}$
$\Rightarrow \mathrm{T}=1010.1+\mathrm{T}_{0}=1010.1+27=1037.1^{\circ} \mathrm{C}$
12. Answer: b

Solution

(b): Here,
$\mathrm{R}_{0}=5 \Omega, \mathrm{R}_{100}=5.25 \Omega, \mathrm{R}_{\mathrm{t}}=5.5 \Omega$
$\begin{aligned} & \text { As, } \\ & \mathrm{R}_{\mathrm{t}}\end{aligned}=\mathrm{R}_{0}(1+\alpha \mathrm{t}) \therefore \mathrm{R}_{100}=\mathrm{R}_{0}(1+\alpha 100)$
$\alpha=\frac{\mathrm{R}_{100}-\mathrm{R}_{0}}{\mathrm{R}_{0} \times 100}$
Let the temperature of hot bath be $\mathrm{t}^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{0}(1+\alpha \mathrm{t})$
$\alpha=\frac{\mathrm{R}_{\mathrm{t}}-\mathrm{R}_{0}}{\mathrm{R}_{0} \times \mathrm{t}}$
Equating equations (i) and (ii), we get
$\frac{\mathrm{R}_{100}-\mathrm{R}_{0}}{\mathrm{R}_{0} \times 100}=\frac{\mathrm{R}_{\mathrm{t}}-\mathrm{R}_{0}}{\mathrm{R}_{0} \times \mathrm{t}}$
$\mathrm{t}=\frac{\mathrm{R}_{\mathrm{t}}-\mathrm{R}_{0}}{\mathrm{R}_{100}-\mathrm{R}_{0}} \times 100=\frac{5.5-5}{5.25-5} \times 100$
$=\frac{0.5}{0.25} \times 100=200{ }^{\circ} \mathrm{C}$

13. Answer: d

Solution

(d): Resistance of heater coil,
$\mathrm{R}^{\prime}=\frac{\mathrm{V}^{2}}{\mathrm{P}}=\frac{200 \times 200}{100}=400 \Omega$
Resistance of either half part $=200 \Omega$.
Equivalent resistance when both parts are connected in
parallel,
$R^{\prime}=\frac{200 \times 200}{200+200}=100 \Omega$.
Energy liberated per second when combination is connected to a source of 200 V ,
$=\frac{\mathrm{V}^{2}}{\mathrm{R}^{\prime}}=\frac{200 \times 200}{100}=400 \mathrm{~J}$.
14. Answer: d

Solution

(d): Wire of length $2 \pi \times 0.1 \mathrm{~m}$ of $12 \Omega \mathrm{~m}^{-1}$ is bent to a circle.

Resistance of each part $=12 \times \pi \times 0.1$
$=1.2 \pi \Omega$
\therefore Total resistance $=0.6 \pi \Omega$

15. Answer: d

Solution
(d): In the parallel combination of three resistances, the
$\frac{1}{R^{2}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
or, $\frac{1}{R_{\text {eq }}}=\frac{1}{9}+\frac{1}{7}+\frac{1}{5}=\frac{35+45+63}{315}=\frac{143}{315}$
$R_{\text {eq }}=\frac{315}{143}=2.02 \Omega$

16. Answer: a

Solution

(a): For equivalent resistance between A and b. 5Ω and 8Ω
resistances are connected in series. R', their equivalen।
resistance is parallel to 6Ω
$\therefore \mathrm{R}^{\prime}=5+8=13 \Omega$
and, $\frac{1}{\mathrm{R}^{\prime \prime}}=\frac{1}{13}+\frac{1}{6}=\frac{6+13}{78}=\frac{19}{78}$
$\mathrm{R}^{\prime \prime}=\frac{78}{19}$
Now $4 \Omega, \mathrm{R}^{\prime \prime}$ and 5Ω resistances are connected in series
equivalent resistance between A and B .
$\therefore R_{\text {eq }}=4+\frac{78}{19}+5=\frac{76+78+95}{19}=13.1 \Omega$
17. Answer: b

Solution

(b): Between points A and B all resistances are combined in
$\begin{aligned} & \text { series. } \\ & \therefore R_{\text {eq }}\end{aligned}=3 \Omega+4 \Omega+5 \Omega+6 \Omega=18 \Omega$
18. Answer: d

Solution

(d): $\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=2 \times 2=4 \mathrm{~V}$
$\therefore \mathrm{V}_{\mathrm{A}}-0=4 \mathrm{~V} \Rightarrow \mathrm{~V}_{\mathrm{A}}=4 \mathrm{~V}$
According to question $V_{B}=0$
Point D is connected to positive terminal of battery of emf 3 V .
19. Answer: a

Solution

Resistance of the upper arm CAD $=2 \Omega+3 \Omega=5 \Omega$
Resistance of the lower arm $\mathrm{CBD}=3 \Omega+2 \Omega=5 \Omega$
As the resistance of both arms are equal, therefore same
amount of current flows in both the arms.

Current through each $\operatorname{arm} \dot{\mathrm{CAD}}$ or $\dot{\mathrm{C}} \overline{\mathrm{B}} \mathrm{D}=1 \mathrm{~A}$ Potential difference across C and A is
$\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{A}}=(2 \Omega)(1 \mathrm{~A})=2 \mathrm{~V}$
Potential difference across C and B is
$V_{C}-V_{B}=(3 \Omega)(1 A)=3 V$
Subtractin (i) from (ii), we get
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=3 \mathrm{~V}-2 \mathrm{~V}=1 \mathrm{~V}$
20. Answer: d

Solution

Let current in the circuit is I . Then total resistance in the circuit
$\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}=2+4+5=11$
$\because \mathrm{V}=\mathrm{IR}$
$\because \mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{12}{11} \mathrm{~A}$
The potential drop across 2Ω resistance
$\mathrm{V}_{1}=\mathrm{IR}_{1}=\frac{12}{11} \times 2=2.18 \mathrm{~V}$
The potential drop across 4Ω resistance
$\mathrm{V}_{2}=\mathrm{IR}_{2}=\frac{12}{11} \times 4=4.36 \mathrm{~V}$
The potential drop across 5Ω resistance
$\mathrm{V}_{3}=\mathrm{IR}_{3}=\frac{12}{11} \times 5=5.45 \mathrm{~V}$
Hence, $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right)=(2.18,4.36,5.45) \mathrm{V}$

21. Answer: 5

Solution

Power, $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$
As the resistance of the bulb is constant
$\therefore \frac{\Delta \mathrm{P}}{\mathrm{P}}=\frac{2 \Delta V}{V}$
$\%$ decrease in power
$=\frac{\Delta \mathrm{P}}{\mathrm{P}} \times 100=\frac{2 \Delta V}{V} \times 100$
$=2 \times 2.5 \%=5 \%$
22. Answer: 2

Solution

The equivalent circuit is,

$R_{e q}=1+\frac{2 \times R_{\text {eq }}}{\left(2+R_{\text {eq }}\right)}=\frac{2+3 R_{e q}}{2+R_{\text {eq }}}$ i.e. $R_{e q}^{2}-R_{\text {eq }}-2=0$
$\Rightarrow R_{\mathrm{cq}}=\frac{1}{2}[1 \pm \sqrt{1+8}]=2 \Omega$.
23. Answer: 4
24. Answer: 5

Solution

According to the given circuit 10Ω and 10Ω resistances
are connected in series.
$-R^{\prime}=10+10=20 \Omega$
Again 10Ω and 10Ω resistances are connected in series
$\therefore \mathrm{R}^{\prime \prime}=10+10=20 \Omega$
$\mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}$ and 10Ω all connected in parallel than
$\therefore \frac{1}{R_{\text {ce }}}=\frac{1}{R^{\prime}}+\frac{1}{R^{\prime \prime}}+\frac{1}{10}=\frac{1}{20}+\frac{1}{20}+\frac{1}{10}=\frac{1+1+2}{20}$
$=\frac{4}{20}=\frac{1}{5}$
$R_{\text {eq }}=5 \Omega$
25. Answer: 0

Solution

The given figure is a circuit of balanced wheatstone bridge as shown in the figure.

i.e., $V_{B}-V_{D}=0$ volt
26. Answer: d

Solution

We know that for the NaCl structure
radius of cation/radius of anion $=0.414 ; \frac{r_{A^{*}}}{r_{\text {t }}}=0.414$
$r_{B^{-}}=\frac{r_{A^{+}}}{0.414}=\frac{120}{0.414}=290 \mathrm{pm}$

27. Answer: a

Solution

The (bcc) structure of CsBr is given in figure
The body diagonal $A D=a \sqrt{3}$, where a is the length of edge
of unit cell
of unit cell
On the basis of figure
$A D=2\left(r_{0}+r\right.$
$A D=2\left(r_{G+}+r_{C-}\right)$
$a \sqrt{3}=2\left(r_{C^{+}}+r_{C T}\right)$
or $\quad\left(r_{\mathrm{C}^{+}}+r_{C T}\right)=\frac{a \sqrt{3}}{2}=400 \times \frac{\sqrt{3}}{2}$
$=200 \times 1.732=346.4 \mathrm{pm}$

28. Answer: b

Solution

Since ionic compound AB has Zns type of structure, therefore
it has tetrahedral holes, for which
$\frac{\text { radius of cation }}{\text { radius }}=0.225$
radius of anion
$\frac{\mathrm{r}^{+}}{\mathrm{r}}=0.225$
$\frac{22.5}{r}=0.225$
Hence $\mathrm{r}_{\mathrm{o}}=100 \mathrm{pm}$

29. Answer:

Solution

In cep anions occuply primitives of the cube while cations occupied voids. In ccp there are two tetrahedral voids and one octahedral holes per anion.
For one oxygen atom there are two tetrahedral holes and one octahedral hole.
Since one fifth of the tetrahedral voids are occupied by divalent cations (X^{2+})
\therefore Number of divalent cations in tetrahedral voids $=2 \times \frac{1}{5}$
Since half of the octaheadral voids are occupied by trivalen
cations (Y^{3+})
\therefore number of trivalent cations in octaheadral voids $=1 \times \frac{1}{2}$
So the formula is the compound is $(\mathrm{X})_{2 \times \frac{1}{5}}(\mathrm{Y})_{\frac{1}{2}}(\mathrm{O})_{1}$
or $(\mathrm{X})_{\frac{2}{5}}(\mathrm{Y})_{\frac{1}{2}}(\mathrm{O})_{1}$,
or $\mathrm{X}_{4} \mathrm{Y}_{5} \mathrm{O}_{10}{ }^{2}$
30. Answer: b

Solution

$\rho=\frac{n \times M_{m}}{N_{A} \times a^{3}}$
$2=\frac{4 \times \mathrm{M}_{\mathrm{m}}}{6.023 \times 10^{23} \times\left(7 \times 10^{-8}\right)^{3}}$
(Since, effective number of atoms is unit cell $=4$) on solving
we get $M_{m}=103.03 \mathrm{gm} / \mathrm{mol}$

31. Answer: d

Solution

The no. of A in one unit cell $=6$
The no. of C in one unit cell $=\frac{2}{3} \times 6=4$
$\therefore \mathrm{m}$.f is $\mathrm{C}_{4} \mathrm{~A}_{6} \equiv \mathrm{C}_{2} \mathrm{~A}_{3}$

32. Answer: d

Solution

The packing efficiency $=0.68$, means the given lattice is BCC
The packing efficiency $=0.68$, mean
The closest distance of approach $=2 \mathrm{r}$
$2 \mathrm{r}=2.86 \mathrm{~A}^{0}=\frac{\sqrt{3} \mathrm{a}}{2} \quad$ ora $=\frac{2 \times 2.86}{\sqrt{3}}=3.30 \mathrm{~A}^{\circ}$.
Let at. wt. of the element $=\mathrm{a}$
$\therefore \frac{2 \times \mathrm{a}}{36 \times 10^{23} \times(3.3)^{3} \times 10^{-24}}=8.57$
$\mathrm{a}=8.57 \times 3 \times(3.3)^{3} \times 0.1=92.39 \simeq 93$
33. Answer: b

Solution
No. of Tetrahedral Void $=2 \times$ No. of atom
Tetrahedral Void $=2 Z$
34. Answer: d

Solution

$\mathrm{A}_{3} \mathrm{~B}_{4}$
35. Answer: b

Solution

$$
\begin{aligned}
& \rho_{1}=\frac{2 \times 56}{\left(\frac{4 r}{\sqrt{3}}\right)^{3}} \\
& \rho_{2}=\frac{4 \times 56}{(2 \sqrt{2} r)^{3}} \quad \therefore \frac{\rho_{1}}{\rho_{2}}=0.918
\end{aligned}
$$

36. Answer: d

Solution

Orthorhombic crystal system has $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$ and $\alpha=\beta=\gamma=90^{0}$.

37. Answer: b

Solution

Distance between two nearest neighbours in bcc $=\frac{\sqrt{3} \mathrm{a}}{2}$

$$
=\frac{\sqrt{3} \times \sqrt{2}}{2}=\frac{1.732 \times \sqrt{2}}{2}=4.503 \AA \text {. }
$$

38. Answer: c

Solution

$$
\begin{aligned}
& \mathrm{de}=\mathrm{a} \\
& \mathrm{~d}_{\mathrm{fd}}=\sqrt{2} \mathrm{a} \\
& \mathrm{~d}_{\mathrm{bd}}=\frac{\sqrt{3} \mathrm{a}}{2} \\
& \therefore \mathrm{~d}_{\mathrm{fd}}>\mathrm{d}_{\mathrm{e}}>\mathrm{d}_{\mathrm{bd}}
\end{aligned}
$$

39. Answer: b

Solution

Coordination number of Zn^{2+} ion in Zinc blende $=4$.
Zn^{2+} ion present in half of tetrahedral void formed by S^{2-} in fec unit cells.
40. Answer: b

Solution

SrCl_{2} is AB_{2} type in which cation is of large size.
41. Answer: b

Solution

 voids $[\therefore$ No. of O - voids $=4]$
$z=4,[\therefore$ No. of $T-$ voids $=8]$.
42. Answer: a

Solution

Ions are displaced from one place to another.
44. Answer: d

Solution

Effective no. of atom in a unit cell $=4$
no. of atom $=\frac{8}{80} \times N_{A}$
\therefore no of unit cell $=\frac{\mathrm{N}_{\mathrm{A}}}{10} \times \frac{1}{4}=\frac{\mathrm{N}_{\mathrm{A}}}{40}$
45. Answer: c

Solution

Grey Cast Iron is metallic solid.
46. Answer: 4
47. Answer: 5

Solution

AB has rock salt structure.
The edge length of the unit cell $=2\left(\mathrm{~d}_{\mathrm{A}-\mathrm{B}}\right)$
$=2 \times \mathrm{y}^{1 / 3} \times 10^{-9} \mathrm{~m}$
Density of $A B=4 \times 6.023 \times y \times \frac{10}{6.023}$
$\times 10^{-27} \times \frac{1}{2^{3} \mathrm{y} \times 10^{-27}} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
$=4 \times \mathrm{y} \times 10 \times \frac{1}{8 \mathrm{y}}=5 \mathrm{~kg} / \mathrm{m}^{3}$
48. Answer: 3
50. Answer: 8
51. Answer: a

Solution

$$
\begin{aligned}
& \text { We have } \cos ^{-1}\left(\frac{x}{a} \cdot \frac{y}{b}-\sqrt{\left(1-\frac{x^{2}}{a^{2}}\right)} \sqrt{\left(1-\frac{y^{2}}{b^{2}}\right)}\right]=\alpha \\
& \left.\Rightarrow \frac{x y}{a b}-\sqrt{\left(1-\frac{x^{2}}{a^{2}}\right)} \sqrt{\left(1-\frac{y^{2}}{b^{2}}\right.}\right)=\cos \alpha \\
& \therefore\left(\frac{x y}{a b}-\cos \alpha\right)^{2}=1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{x^{2} y^{2}}{a^{2} b^{2}} \\
& \frac{x^{2} y^{2}}{a^{2} b^{2}}+\cos ^{2} \alpha-\frac{2 x y}{a b} \cos \alpha=1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{x^{2} y^{2}}{a^{2} b^{2}} \\
& \Rightarrow \frac{x^{2}}{a^{2}}-\frac{2 x y}{a b} \cos \alpha+\frac{y^{2}}{b^{2}}=1-\cos ^{2} \alpha=\sin ^{2} \alpha
\end{aligned}
$$

43. Answer: c

Solution

Some of O^{2-} combine with each other forming O_{2} gas which is liberated learning behind electrons at the site vacated by oxide ions.

52. Answer: d

Solution

The given expression is equal to
$2\left[\pi+\tan ^{-1} \frac{1+2}{1-2}+\tan ^{-1} 3\right]$
$=2\left(\pi-\tan ^{-1} 3+\tan ^{-1} 3\right)=2 \pi$
53. Answer: d

Solution

Taking $\mathrm{x}=\tan \theta, \tan ^{-1} \frac{\sqrt{1-\mathrm{x}^{2}}-1}{\mathrm{x}}=\tan ^{-1} \frac{\sec \theta-1}{\tan \theta}$
$=\tan ^{-1} \frac{1-\cos \theta}{\sin \theta}=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)=\left(\frac{1}{2}\right) \theta=\left(\frac{1}{2}\right) \tan ^{-1} x$
So that according to the given condition
So that according to the given condition
$\left(\frac{1}{2}\right) \tan ^{-1} x=4 \Rightarrow \tan ^{-1} x=8$ or $x=\tan 8$

54. Answer: b

Solution
$\tan \left(\sec ^{-1} x\right)=\sin \cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)$
from the given equation it is clear that x is positive.
Let $\sec ^{-1} x=\theta \Rightarrow \sec \theta=x \Rightarrow \tan \theta=\frac{2}{\sqrt{5}}$
$\Rightarrow x^{2}=1+\frac{4}{5} \Rightarrow x^{2}=\frac{9}{5} \Rightarrow x=\frac{3}{\sqrt{5}}$
55. Answer: d

Solution

(a) $\cos \left(\tan ^{-1}(\tan 4)\right)=\cos \left(\tan ^{-1} \tan (4-\pi)\right)$ $=\cos (4-\pi)=-\cos 4>0$
(b) $\sin \left(\cot ^{-1}(\cot 4)\right)=\sin \left(\cot ^{-1}(\cot 4-\pi)\right)$ $\sin (4-\pi)=-\sin 4>0$
(c) $\tan \left(\cos ^{-1}(\cos 5)\right)=\tan \left(\cos ^{-1} \cos (2 \pi-5)\right.$
$=\tan (2 \pi-5)=-\tan 5>0$
(d) $\cot \left(\sin ^{-1}(\sin 4)\right)=\cot \left(\sin \sin ^{-1}(\pi-4)\right)$
$=\cot (\pi-4)=-\cot 4<0$
56. Answer: b

Solution

L.H.S. of choice (B) is a negative number and R.H.S. is a positive numbe

57. Answer: c

Solution

Here, the expression could be written as
$\Rightarrow \cos ^{-1} x+\cos ^{-1}\left\{x \cdot \frac{1}{\sqrt{2}}+\sqrt{1-x^{2}} \cdot \sqrt{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}\right\}$
$\Rightarrow \cos ^{-1} \mathrm{x}+\cos ^{-1} \frac{1}{\sqrt{2}}-\cos ^{-1} \mathrm{x}$
$\left\{\because \frac{1}{\sqrt{2}}<x \Rightarrow \cos ^{-1} \frac{1}{\sqrt{2}}>\cos ^{-1} x\right\}$
$\Rightarrow \cos ^{-1} \frac{1}{\sqrt{2}}=\frac{\pi}{4}$

58. Answer: b

Solution

$\cos ^{-1} \sqrt{x}>\frac{\pi}{2}-\cos ^{-1} \sqrt{x} \quad[\because x \geq 0]$
$\cos ^{-1} \sqrt{\mathrm{x}}>\frac{\pi}{4}$
$\Rightarrow \frac{\pi}{4}<\cos ^{-1} \sqrt{\mathrm{x}} \leq \frac{\pi}{2}$
$0 \leq \sqrt{x}<\frac{1}{\sqrt{2}}$
$0 \leq \mathrm{x}<\frac{1}{2}$
59. Answer: a

Solution

$1 \mathrm{rad}>45^{\circ} \therefore \tan 1>\tan 45^{\circ}$
$\Rightarrow \tan 1>1$
Also $\tan ^{-1}(1)=\frac{\pi}{4}<1$,
Hence, $\tan 1>\tan ^{-1}(1)$

60. Answer: d

Solution

(d) $\Rightarrow \cos ^{-1}(x)+\cos ^{-1}(y)+\cos ^{-1}(z)=\cos ^{-1}(-1)$
$\Rightarrow \cos ^{-1}(\mathrm{x})+\cos ^{-1}(\mathrm{y})=\cos ^{-1}(-1)-\cos ^{-1}(\mathrm{z})$
$\Rightarrow \cos ^{-1}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right)=\cos ^{-1}\{(-1)(z)\}$
$\Rightarrow x y-\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}=-z$
squaring both sides we get
$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+2 \mathrm{xyz}=1$
Trick : Put $x=y=z=\frac{1}{2}$
so $\cos ^{-1} \frac{1}{2}+\cos ^{-1} \frac{1}{2}+\cos ^{-1} \frac{1}{2}=\pi$
Obviously (D) holds for these values of x, y, z.
61. Answer: c

Solution

isin $\left(2 \sin ^{-1}(0.8)=2 .\left(\frac{8}{10}\right) \sqrt{\left(1-\frac{64}{100}\right)}=0.96\right.$
62. Answer: b

Solution

Put $x=\tan \theta$ solution $=\frac{1}{\sqrt{3}}$

63. Answer: a

Solution

$\sin ^{-1} \sin 22=7 \pi-22, \cos ^{-1} \cos 33=33-10 \pi$
$\tan ^{-1} \tan 44=44-14 \pi$
Hence $7 \pi-22+33-10 \pi+44-14 \pi, 55-17 \pi$

64. Answer: c

Solution

RHS : $\cos ^{-1} \frac{x}{2}-\cos ^{-1} 2$
$\cos ^{-1}\left\{\frac{1}{2} x^{2}+\sqrt{1-x^{2}} \sqrt{1-\frac{x^{2}}{4}}\right\}$
considering $\cos ^{-1} \frac{x}{2} \geq \cos ^{-1} x \Rightarrow \frac{x}{2} \leq x$
True for all positive x also for $\cos ^{-1} \mathrm{x}-1 \leq \mathrm{x} \leq 1$
Hence : $0 \leq x \leq 1$
65. Answer: c

Solution

(c) $\left(\sin ^{-1} x\right)^{2}+\left(\frac{\pi}{2}-\sin ^{-1} x\right)^{2}$
$=2\left(\sin ^{-1} x\right)^{2}-\pi \sin ^{-1} x+\frac{\pi^{2}}{4}$
so minimum value is that expression is $\frac{\pi^{2}}{8}$
so, $k=8$
66. Answer: d

Solution

67. Answer: d

Solution

68. Answer: c

Solution

69. Answer: c

Solution

70. Answer: a

Solution

71. Answer: 1

Solution

Sol. $\tan ^{-1} \mathrm{n}+\tan ^{-1}(\mathrm{n}+1)+\tan ^{-1}(\mathrm{n}+2)=\pi$
$\tan ^{-1} \mathrm{n}+\pi+\tan ^{-1} \frac{(\mathrm{n}+1+\mathrm{n}+2)}{(1-(\mathrm{n}+1)(\mathrm{n}+2))}=\pi$
$\tan ^{-1} \mathrm{n}+\pi-\tan ^{-1} \frac{(2 \mathrm{n}+3)}{\left(\mathrm{n}^{2}+3 \mathrm{n}+1\right)}=\pi$
$=\frac{2 n+3}{n^{2}+3 n+1}$
$\mathrm{n}^{3}+3 \mathrm{n}^{2}-\mathrm{n}-3=0$
$\mathrm{n}=1$ as $\mathrm{n} \in \mathrm{N}$

72. Answer: 3

Solution

Sol. $\because 5-2 \pi>\mathrm{x}^{2}-4 \mathrm{x}$
$\therefore x^{2}-4 x+2 \pi-5<0$
$\Rightarrow 2-\sqrt{9-2 \pi}<x<2+\sqrt{9-2 \pi}$
Integer value of $x=1,2,3$
\therefore number of values $=3$
73. Answer: 4

Solution

$\therefore \tan ^{-1}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}}\right)=\tan ^{-1} 1-\tan \mathrm{x}=\frac{\pi}{4}[$ for maximum]
74. Answer: 10

Solution

Sol. $0 \leq \cos ^{-1} x \leq \pi$. Hence, from the question, $\cos ^{-1} x_{i}=0$ for all i.
$\therefore \mathrm{x}_{\mathrm{i}}=1$ for all i .
75. Answer: 5

Solution

From graph it is clear that $\mathrm{m} \in\left(0, \frac{\pi}{2}\right] \therefore \lambda=5$

