Kota, Rajasthan
CORE
ACADEMY
Enhancing ability to learn & Express

Mathematics

EXERCISE - I

Relations

- 1. If R is a relation from a finite set A having m elements to a finite set B having n elements, then the number of relations from A to B is-(1) 2^{mn} (2) 2^{mn} -1 (3) 2mn (4) mⁿ 2. In the set $A = \{1, 2, 3, 4, 5\}$, a relation R is defined by $R = \{(x, y) \mid x, y \in A \text{ and } x \leq y\}$. Then R is-(1) Reflexive (2) Symmetric (3) Transitive (4) None of these 3. For real numbers x and y, we write $x R y \Leftrightarrow x - y + \sqrt{2}$ is an irrational number. Then the relation R is-(1) Reflexive (2) Symmetric (3) Transitive (4) none of these
- Let X = {1, 2, 3, 4} and Y = {1, 3, 5, 7, 9}. Which of the following is relations from X to Y(1) R₁ = {(x, y) | y = 2 + x, x ∈ X, y ∈ Y}
 (2) R₂ = {(1, 1), (2, 1), (3, 3), (4, 3), (5, 5)}
 (3) R₃ = {(1, 1), (1, 3), (3, 5), (3, 7), (5, 7)}
 (4) R₄ = {(1, 3), (2, 5), (2, 4), (7, 9)}
- 5. Let L denote the set of all straight lines in a plane. Let a relation R be defined by $\alpha \ R \ \beta \Leftrightarrow \alpha \perp \beta$, $\alpha, \beta \in L$. Then R is-(1) Reflexive (2) Symmetric
 - (3) Transitive (4) none of these
- 6. Let R be a relation defined in the set of real numbers by a R b \Leftrightarrow 1 + ab > 0. Then R is-(1) Equivalence relation (2) Transitive
 - (3) Symmetric (4) Anti-symmetric
- Which one of the following relations on R is equivalence relation-

$(1) \ge R_1 y \Leftrightarrow x = y $	(2) x $R_2 y \Leftrightarrow x \ge y$
(3) x $R_3 y \Leftrightarrow x \mid y$	(4) x $R_4 y \Leftrightarrow x \leq y$

- 8. Two points P and Q in a plane are related if 15. OP = OQ, where O is a fixed point. This relation is(1) Reflexive but symmetric
 (2) Symmetric but not transitive
 (3) An equivalence relation
 - (4) none of these
- 9. The relation R defined in A = {1, 2, 3} by a R b if $|a^2 b^2| \le 5$. Which of the following is false-(1)R ={(1, 1), (2, 2), (3, 3), (2, 1), (1, 2), (2, 3), (3, 2) (2) R⁻¹ = R (3) Domain of R = {1, 2, 3} (4) Range of R = {5}
- Let a relation R is the set N of natural numbers be 10. defined as $(x, y) \in R$ if and only if $x^2 - 4xy + 3y^2 = 0$ for all x, $y \in N$. The relation R is-(1) Reflexive (2) Symmetric (3) Transitive (4) An equivalence relation Let A = $\{2, 3, 4, 5\}$ and let R = $\{(2, 2), (3, 3),$ 11. (4, 4), (5, 5), (2, 3), (3, 2), (3, 5), (5, 3) be a relation in A. Then R is-(1) Reflexive and transitive (2) Reflexive and symmetric (3) Reflexive and antisymmetric (4) none of these 12. If $A = \{2, 3\}$ and $B = \{1, 2\}$, then A B is equal to- $(1) \{(2, 1), (2, 2), (3, 1), (3, 2)\}$ $(2) \{(1, 2), (1, 3), (2, 2), (2, 3)\}$ $(3) \{(2, 1), (3, 2)\}$ $(4) \{(1, 2), (2, 3)\}$ 13. Let R be a relation over the set N $\,$ N and it is defined by (a, b) R (c, d) \Rightarrow a + d = b + c. Then R is-(1) Reflexive only (2) Symmetric only (3) Transitive only (4) An equivalence relation 14. Let N denote the set of all natural numbers and R be the relation on N N defined by (a, b) R (c, d) if ad (b + c) = bc(a + d), then R is-(1) Symmetric only (2) Reflexive only (3) Transitive only (4) An equivalence relation If $A = \{1, 2, 3\}, B = \{1, 4, 6, 9\}$ and R is a relation from A to B defined by 'x is greater than y'. Then range of R is-(1) {1, 4, 6, 9} (2) {4, 6, 9} (3) {1} (4) none of these 16. Let L be the set of all straight lines in the Euclidean plane. Two lines ℓ_1 and ℓ_2 are said to be related by the relation R if ℓ_1 is parallel to ℓ_2 . Then the relation R is-
 - (1) Reflexive(2) Symmetric(3) Transitive(4) Equivalence

4

Mathematics

- **17.** A and B are two sets having 3 and 4 elements respectively and having 2 elements in common. The number of relations which can be defined from A to B is-
 - (1) 2^5 (2) $2^{10} 1$
 - (3) $2^{12} 1$ (4) none of these
- - (1) reflexive and symmetric
 - (2) transitive and symmetric
 - (3) reflexive, transitive and symmetric
 - (4) reflexive, transitive and not symmetric
- **19.** Let R = {(x, y) : x, y \in A, x + y = 5} where A = {1, 2, 3, 4, 5} then
 - (1) R is not reflexive, symmetric and not transitive
 - (2) R is an equivalence relation
 - (3) R is reflexive, symmetric but not transitive
 - (4) R is not reflexive, not symmetric but transitive
- **20.** Let R be a relation on a set A such that $R = R^{-1}$ then R
 - is-
 - (1) reflexive
 - (2) symmetric
 - (3) transitive
 - (4) none of these
- $\label{eq:lambda} \begin{array}{ll} \textbf{21.} & Let \ x, \ y \in I \ and \ suppose \ that \ a \ relation \ R \ on \ I \ is \ defined \\ & by \ x \ R \ y \ if \ and \ only \ if \ x \leq y \ then \end{array}$
 - (1) R is partial order ralation
 - (2) R is an equivalence relation
 - (3) R is reflexive and symmetric
 - (4) R is symmetric and transitive
- **22.** Let R be a relation from a set A to a set B, then (1) R = A \cup B (2) R = A \cap B (3) R \subseteq A B (4) R \subseteq B A
- **23.** Given the relation $R = = \{(1, 2), (2, 3)\}$ on the set $A = \{1, 2, 3\}$, the minimum number of ordered pairs which when added to R make it an equivalence relation is-(1) 5 (2) 6 (3) 7 (4) 8

24.	Let $P = \{(x, y) x^2 + y^2 = 1,$	$x, y \in R$ } Then P is-						
	(1) reflexive	(2) symmetric						
	(3) transitive	(4) anti-symmetric						
25.	Let X be a family of sets a	and R be a relation on X						
	defined by 'A is disjoint from	n B'. Then R is-						
	(1) reflexive	(2) symmetric						
	(3) anti-symmetric	(4) transitive						
26.	In order that a relation R de	fined in a non-empty set A						
	is an equivalence relation, it	is sufficient that R						
	(1) is reflexive							
	(2) is symmetric							
	(3) is transitive							
	(4) possesses all the above t	hree properties						
27.	If R be a relation '<' fro	om A = $\{1, 2, 3, 4\}$ to						
	$B=\{1,3,5\}$ i.e. (a, b) \in R iff a < b, then $ROR^{\text{-1}}$ is-							
	(1) {(1, 3), (1, 5), (2, 3), (2,	5), (3, 5), (4, 5)}						
	$(2) \{(3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)\}$							
	(3) {(3, 3), (3, 5), (5, 3), (5,	5)}						
	(4) {(3, 3), (3, 4), (4, 5)}							
28.	If R is an equivalence relation	on in a set A, then R ⁻¹ is-						
	(1) reflexive but not symmetry	ric						
	(2) symmetric but not transit	tive						
	(3) an equivalence relation							
	(4) none of these							
29.	Let R and S be two equiva	lence relations in a set A.						
	Then-							
	(1) $R \cup S$ is an equivalence	relation in A						
	(2) $R \cap S$ is an equivalence	relation in A						
	(3) R – S is an equivalence r	relation in A						
	(4) none of these							
30.	Let A = $\{p, q, r\}$. Which	h of the following is an						
	equivalence relation in A ?							

- (1) $R_1 = \{(p, q), (q, r), (p, r), (p, p)\}$
- (2) $R_2 = \{(r, q) (r, p), (r, r), (q, q)\}$
- (3) $R_3 = \{(p, p), (q, q), (r, r), (p, q)\}$
- (4) none of these

ANSWER KEY EXERCISE - I											<u>- I</u>				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	3	1	1	2	3	1	3	4	1	2	1	4	4	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	4	1	2	1	3	3	2	2	4	3	3	2	4

Kota, Raja	ACADEMY ACADEMY Ability to learnes Math	emati	
EX	ERCISE - II	Ī	Previous Years JEE MAIN Questions
1.	Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a releation on the set $A = \{1, 2, 3, 4\}$. The relation R is- [AIEEE - 2004] (1) transitive (2) not symmetric (3) reflexive (4) a function Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12)\}$	5.	Let R be the set of real numbers. Statement-1: $A = \{(x, y) \in R \ R : y - x \text{ is an integer}\} \text{ is an equivalence}$ relation on R. [AIEEE - 2011] Statement-2: $B = \{(x, y) \in R \ R : x = \alpha y \text{ for some rational number}$ $\alpha\}$ is an equivalence relation on R.
	 (3, 9), (3, 12), (3, 6)} be relation on the set A = {3, 6, 9, 12). The relation is- [AIEEE - 2005] (1) rflexive and transitive only (2) reflexive only (3) an equilvalence relation (4) reflexive and symmetric only 	6.	 (1) Statement-1 is true, Statement-2 is talse. (2) Statement-1 is false, Statement-2 is true (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1 (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. Consider the following relation R on the set of real square matirces of order 3. R={(A, B) A=P-1 BP for some invertible matrix P}.
3.	 Let W denote the words in the English dictionary. Define the relation R by : R = {(x, y) ∈ W W the words x and y have at least one letter in common}. Then R is [AIEEE - 2006] (1) reflexive, symmetric and not transitive (2) reflexive, symmetric and transitive (3) reflexive, not symmetric and transitive (4) not reflexive, symmetric and transitive 	2	Statement - 1: R is an equivalence relation. Statement - 2: For any two invertible 3 3 martices M and N, (MN) ⁻¹ = N ⁻¹ M ⁻¹ [AIEEE - 2011] (1) Statement-1 is false, statement-2 is true. (2) Statement-1 is true, statement-2 is true; Statement-1 is true, statement-2 is correct explanation for statement-1. (3) Statement-1 is true, statement-2 is
4.	 Consider the following relations :- R = {(x, y) x, y are real numbers and x = wy for some rational number w}; S = {(^m/_n, ^p/_q) m, n, p and q are integers such that n, q ≠ 0 and qm = pn}. Then : [AIEEE - 2010] (1) R is an equivalence relation but S is not an equivalence relation (2) Neither R nor S is an equivalence relation (3) S is an equivalence relation but R is not an equivalence relation (4) R and S both are equivalence relations 	2 t 1	true; Statement-2 is not a correct explanation for statement-1. (4) Statement-1 is true, statement-2 is false.
AN	SWER KEY		EXERCISE - II

Que.	1	2	3	4	5	6								
Ans.	2	1	1	3	1	1								
6														