Enhancing ability to learn \& Express

## EXERCISE - I

1. If R is a relation from a finite set A having m elements to a finite set $B$ having $n$ elements, then the number of relations from A to B is-
(1) $2^{\mathrm{mn}}$
(2) $2^{\mathrm{mn}}-1$
(3) 2 mn
(4) $\mathrm{m}^{\mathrm{n}}$
2. In the set $A=\{1,2,3,4,5\}$, a relation $R$ is defined by $R=\{(x, y) \mid x, y \in A$ and $x<y\}$. Then $R$ is-
(1) Reflexive
(2) Symmetric
(3) Transitive
(4) None of these
3. For real numbers $x$ and $y$, we write $x R y \Leftrightarrow x-y+\sqrt{2}$ is an irrational number. Then the relation R is-
(1) Reflexive
(2) Symmetric
(3) Transitive
(4) none of these
4. Let $\mathrm{X}=\{1,2,3,4\}$ and $\mathrm{Y}=\{1,3,5,7,9\}$. Which of the following is relations from X to Y -
(1) $R_{1}=\{(x, y) \mid y=2+x, x \in X, y \in Y\}$
(2) $R_{2}=\{(1,1),(2,1),(3,3),(4,3),(5,5)\}$
(3) $R_{3}=\{(1,1),(1,3),(3,5),(3,7),(5,7)\}$
(4) $\mathrm{R}_{4}=\{(1,3),(2,5),(2,4),(7,9)\}$
5. Let L denote the set of all straight lines in a plane. Let a relation R be defined by $\alpha \mathrm{R} \beta \Leftrightarrow \alpha \perp \beta$, $\alpha, \beta \in \mathrm{L}$. Then R is-
(1) Reflexive
(2) Symmetric
(3) Transitive
(4) none of these
6. Let R be a relation defined in the set of real numbers by $\mathrm{aR} \mathrm{b} \Leftrightarrow 1+\mathrm{ab}>0$. Then R is-
(1) Equivalence relation
(2) Transitive
(3) Symmetric (4) Anti-symmetric
7. Which one of the following relations on R is equivalence relation-
(1) $x R_{1} y \Leftrightarrow|x|=|y|$
(2) $x R_{2} y \Leftrightarrow x \geq y$
(3) $x R_{3} y \Leftrightarrow x \mid y$
(4) $x R_{4} y \Leftrightarrow x<y$
8. Two points P and Q in a plane are related if $\mathrm{OP}=\mathrm{OQ}$, where O is a fixed point. This relation is-
(1) Reflexive but symmetric
(2) Symmetric but not transitive
(3) An equivalence relation
(4) none of these
9. The relation $R$ defined in $A=\{1,2,3\}$ by $a R b$ if $\mid a^{2}$ $-b^{2} \mid \leq 5$. Which of the following is false-
$(1) \mathrm{R}=\{(1,1),(2,2),(3,3),(2,1),(1,2),(2,3),(3,2)$
(2) $R^{-1}=R$
(3) Domain of $\mathrm{R}=\{1,2,3\}$
(4) Range of $\mathrm{R}=\{5\}$
10. Let a relation R is the set N of natural numbers be defined as $(x, y) \in R$ if and only if $x^{2}-4 x y+3 y^{2}=0$ for all $x, y \in N$. The relation $R$ is-
(1) Reflexive
(2) Symmetric
(3) Transitive
(4) An equivalence relation
11. Let $\mathrm{A}=\{2,3,4,5\}$ and let $\mathrm{R}=\{(2,2),(3,3)$, $(4,4),(5,5),(2,3),(3,2),(3,5),(5,3)\}$ be a relation in A. Then R is-
(1) Reflexive and transitive
(2) Reflexive and symmetric
(3) Reflexive and antisymmetric
(4) none of these
12. If $A=\{2,3\}$ and $B=\{1,2\}$, then $A \quad B$ is equal to-
(1) $\{(2,1),(2,2),(3,1),(3,2)\}$
(2) $\{(1,2),(1,3),(2,2),(2,3)\}$
(3) $\{(2,1),(3,2)\}$
(4) $\{(1,2),(2,3)\}$
13. Let R be a relation over the set $\mathrm{N} \quad \mathrm{N}$ and it is defined by (a, b) $R(c, d) \Rightarrow a+d=b+c$. Then $R$ is-
(1) Reflexive only
(2) Symmetric only
(3) Transitive only
(4) An equivalence relation
14. Let N denote the set of all natural numbers and R be the relation on $\mathrm{N} \quad \mathrm{N}$ defined by $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ if $\mathrm{ad}(\mathrm{b}+$ c) $=b c(a+d)$, then $R$ is-
(1) Symmetric only
(2) Reflexive only
(3) Transitive only
(4) An equivalence relation
15. If $A=\{1,2,3\}, B=\{1,4,6,9\}$ and $R$ is a relation from $A$ to $B$ defined by ' $x$ is greater than $y$ '. Then range of $R$ is-
(1) $\{1,4,6,9\}$
(2) $\{4,6,9\}$
(3) $\{1\}$
(4) none of these
16. Let L be the set of all straight lines in the Euclidean plane. Two lines $\ell_{1}$ and $\ell_{2}$ are said to be related by the relation R if $\ell_{1}$ is parallel to $\ell_{2}$. Then the relation R is-
(1) Reflexive
(2) Symmetric
(3) Transitive
(4) Equivalence

Enhancing ability to learn \& Express
Mathematics
VIDRUR
17. A and B are two sets having 3 and 4 elements respectively and having 2 elements in common. The number of relations which can be defined from A to B is-
(1) $2^{5}$
(2) $2^{10}-1$
(3) $2^{12}-1$
(4) none of these
18. For $n, m \in N, n \mid m$ means that $n$ is a factor of $m$, the relation | is-
(1) reflexive and symmetric
(2) transitive and symmetric
(3) reflexive, transitive and symmetric
(4) reflexive, transitive and not symmetric
19. Let $R=\{(x, y): x, y \in A, x+y=5\}$ where $A=\{1,2,3,4,5\}$ then
(1) $R$ is not reflexive, symmetric and not transitive
(2) R is an equivalence relation
(3) R is reflexive, symmetric but not transitive
(4) $R$ is not reflexive, not symmetric but transitive
20. Let R be a relation on a set A such that $\mathrm{R}=\mathrm{R}^{-1}$ then R is-
(1) reflexive
(2) symmetric
(3) transitive
(4) none of these
21. Let $\mathrm{x}, \mathrm{y} \in \mathrm{I}$ and suppose that a relation R on I is defined by $x R y$ if and only if $x \leq y$ then
(1) $R$ is partial order ralation
(2) $R$ is an equivalence relation
(3) R is reflexive and symmetric
(4) R is symmetric and transitive
22. Let R be a relation from a set A to a set B , then-
(1) $R=A \cup B(2) R=A \cap B$
(3) $R \subseteq A \quad B$
(4) $R \subseteq B \quad A$
23. Given the relation $\mathrm{R}==\{(1,2),(2,3)\}$ on the set $\mathrm{A}=$ $\{1,2,3\}$, the minimum number of ordered pairs which when added to R make it an equivalence relation is-
(1) 5
(2) 6
(3) 7
(4) 8
24. Let $P=\left\{(x, y) \mid x^{2}+y^{2}=1, x, y \in R\right\}$ Then $P$ is-
(1) reflexive
(2) symmetric
(3) transitive
(4) anti-symmetric
25. Let $X$ be a family of sets and $R$ be a relation on $X$ defined by ' A is disjoint from B '. Then R is-
(1) reflexive
(2) symmetric
(3) anti-symmetric
(4) transitive
26. In order that a relation $R$ defined in a non-empty set $A$ is an equivalence relation, it is sufficient that R
(1) is reflexive
(2) is symmetric
(3) is transitive
(4) possesses all the above three properties
27. If R be a relation $'<$ ' from $\mathrm{A}=\{1,2,3,4\}$ to $B=\{1,3,5\}$ i.e. $(a, b) \in R$ iff $a<b$, then $\operatorname{ROR}^{-1}$ is-
(1) $\{(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)\}$
(2) $\{(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)\}$
(3) $\{(3,3),(3,5),(5,3),(5,5)\}$
(4) $\{(3,3),(3,4),(4,5)\}$
28. If $R$ is an equivalence relation in a set $A$, then $R^{-1}$ is-
(1) reflexive but not symmetric
(2) symmetric but not transitive
(3) an equivalence relation
(4) none of these
29. Let R and S be two equivalence relations in a set A . Then-
(1) $R \cup S$ is an equivalence relation in $A$
(2) $R \cap S$ is an equivalence relation in $A$
(3) $\mathrm{R}-\mathrm{S}$ is an equivalence relation in A
(4) none of these
30. Let $A=\{p, q, r\}$. Which of the following is an equivalence relation in $A$ ?
(1) $R_{1}=\{(p, q),(q, r),(p, r),(p, p)\}$
(2) $R_{2}=\{(r, q)(r, p),(r, r),(q, q)\}$
(3) $R_{3}=\{(p, p),(q, q),(r, r),(p, q)\}$
(4) none of these

## ANSWER KEY

EXERCISE - I

| Que. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Ans. | 1 | 3 | 1 | 1 | 2 | 3 | 1 | 3 | 4 | 1 | 2 | 1 | 4 | 4 | 3 |
| Que. | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Ans. | 4 | 4 | 4 | 1 | 2 | 1 | 3 | 3 | 2 | 2 | 4 | 3 | 3 | 2 | 4 |

## EXERCISE - II

1. $\operatorname{Let} \mathrm{R}=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a releation on the set $A=\{1,2,3,4\}$. The relation $R$ is-
[AIEEE - 2004]
1) transitive
(2) not symmetric
(3) reflexive
(4) a function
2. Let $\mathrm{R}=\{(3,3),(6,6),(9,9),(12,12),(6,12)$, $(3,9),(3,12),(3,6)\}$ be relation on the set $A=\{3,6,9,12)$. The relation is- $\quad$ [AIEEE - 2005]
(1) rflexive and transitive only
(2) reflexive only
(3) an equilvalence relation
(4) reflexive and symmetric only
3. Let W denote the words in the English dictionary. Define the relation $R$ by : $R=\{(x, y) \in W \quad W \mid$ the words $x$ and $y$ have at least one letter in common $\}$. Then R is-
[AIEEE - 2006]
(1) reflexive, symmetric and not transitive
(2) reflexive, symmetric and transitive
(3) reflexive, not symmetric and transtive
(4) not reflexive, symmetric and transitive
4. Consider the following relations :-
$R=\{(x, y) \mid x, y$ are real numbers and $x=w y$ for some rational number $w\}$;
$\mathrm{S}=\left\{\left.\left(\frac{\mathrm{m}}{\mathrm{n}}, \frac{\mathrm{p}}{\mathrm{q}}\right) \right\rvert\, \mathrm{m}, \mathrm{n}, \mathrm{p}\right.$ and q are integers such that
$\mathrm{n}, \mathrm{q} \neq 0$ and $\mathrm{qm}=\mathrm{pn}\}$.
Then :
[AIEEE - 2010]
(1) $R$ is an equivalence relation but $S$ is not an equivalence relation
(2) Neither R nor S is an equivalence relation
(3) S is an equivalence relation but R is not an equivalence relation
(4) R and S both are equivalence relations
5. Let R be the set of real numbers.

Statement-1:
$A=\{(x, y) \in R \quad R: y-x$ is an integer $\}$ is an equivalence relation on $R$.
[AIEEE - 2011]

## Statement-2:

$B=\{(x, y) \in R \quad R: x=\alpha y$ for some rational number
$\alpha\}$ is an equivalence relation on R .
(1) Statement-1 is true, Statement-2 is false.
(2) Statement-1 is false, Statement-2 is true
(3) Statement-1 is true, Statement-2 is true; Statement2 is a correct explanation for Statement-1
(4) Statement-1 is true, Statement-2 is true; Statement2 is not a correct explanation for Statement-1.
6. Consider the following relation R on the set of real square matirces of order 3.
$R=\left\{(A, B) \mid A=P^{-1} B P\right.$ for some invertible matrix $\left.P\right\}$.
Statement - 1:
$R$ is an equivalence relation.
Statement - 2:
For any two invertible 33 martices $M$ and $N$, $(\mathrm{MN})^{-1}=\mathrm{N}^{-1} \mathrm{M}^{-1}$
[AIEEE - 2011]
(1) Statement-1 is false, statement-2 is true. ( 2 )

Statement-1 is true, statement-2 is true; Statement-2 is correct explanation for statement-1.
(3) Statement-1 is true, statement-2 is true; Statement-2 is not a correct explanation for statement-1.
(4) Statement-1 is true, statement-2 is false.

## ANSWER KEY

EXERCISE - II

| Que. | 1 | 2 | 3 | 4 | 5 | 6 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ans. | 2 | 1 | 1 | 3 | 1 | 1 |  |  |  |  |  |  |  |  |  |

