Subject :Maths

Topic: Function lecture 4

Q. 1 If $x \in\left(0,90^{\circ}\right.$] then [$\left.\cos x\right]$ is (where [] is greatest integer function)
(A) 0
(B) 1
(C) -1
(D) 2
Q. 2 The function $f: N \rightarrow N$ defined by $f(x)=x-5\left[\frac{x}{5}\right]$, where N is set of natural numbers and $[x]$ denotes greatest integer function. Then $f(x)$ can't be
(A) x
(B) $x-5$
(C) $x+5$
(D) $x-1$
Q. 3 Find number of solutions of equation ([] is g IF) $\left[x-4\left[\frac{x}{4}\right]\right]=[x]-4$
(A) 3
(B) 4
(C) 1
(D) ∞
Q. 4 If $-3(x-[x])^{2}+2(x-[x])=0$ then number of solutions of equation in $x \in[0,4]$ is
(A) 8
(B) 9
(C) 5
(D) 4
Q. 5 If $\left[\frac{1}{x}\right]=2$ then-
(A) $x \in\left(\frac{1}{3}, \frac{1}{2}\right)$
(B) $x \in\left[\frac{1}{3}, \frac{1}{2}\right]$
(C) $x \in\left(\frac{1}{3}, \frac{1}{2}\right]$
(D) None
Q. 6 If $[x]=\{x\}$ (where [] and $\}$ are greatest integer and fractional part function) then
(A) $x \in[0,1)$
(B) $x \in I$
(C) $x \in R$
(D) $x=0$ only
Q. 7 If $[x]$ and $\{x\}$ denote respectively the greatest integer function and fractional past function then number of solutions of equation
$4\{x\}=x+[x]$ is
(A) 1
(B) 2
(C) 3
(D) 0
Q. $8 \quad$ Values of x satisfying $\left[\frac{x^{2}}{x^{2}+1}\right]=\{x+3\}$ is
(A) $x \in R_{o}$
(B) $x \in I$
(C) $x \in R-I$
(D) 0
Q. $9 \quad\{x+n\}=\{x\}$ then the least value of positive integral n is
(A) 2
(B) 3
(C) 4
(D) 1
Q. $10 \quad\{2+\sqrt{3}\}$ is equal to
(A) $1-\sqrt{3}$
(B) $\sqrt{3}-1$
(C) 0
(D) None

Answer Key

Q.	1	2	3	4	5	6	7	8	9	10
A.	A	D	D	B	C	D	B	B	D	B

