Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3

SECTION A
This section comprises multiple choice questions (MCQs) of 1 mark each.

1. The sum of the first 50 odd natural numbers is :
(a) 5000
(c) 2550
(b) 2500
(d) 5050
2. In the given figure, $\mathrm{AD}=2 \mathrm{~cm}, \mathrm{DB}=3 \mathrm{~cm}, \mathrm{DE}=2.5 \mathrm{~cm}$ and $\mathrm{DE} \| \mathrm{BC}$. The value of x is :

(a) 6 cm
(c) 6.25 cm
(b) 3.75 cm
(d) 7.5 cm

Page 3
P.T.O.
Q.1. Solve (b)

$$
\begin{aligned}
& S_{n}=1+3+5 \cdots 99 \\
& =\frac{50}{2}(1+99)=50 \times 50=2500
\end{aligned}
$$

Answer - (b) 2500
Q.2. Solve (C) Acc. to figure

$$
\begin{gathered}
\frac{A D}{A B}=\frac{D E}{B C} \\
\frac{2}{5}=\frac{2.5}{x} \\
x=\frac{6.25 \mathrm{~cm}}{} \quad \text { Arson (C) }
\end{gathered}
$$

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3
3. A circle is of radius 3 cm . The distance between two of its parallel tangents is :
(a) 12 cm
(b) $6 \mathbf{c m}$
(c) 3 cm
(d) 4.5 cm

CP (b)

(b) 6 cm
4. The median class for the data given below is :

Class	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	10	12	14	13	17

(a) $80-100$
(b) 20-40
(c) 40-60
(d) $60-80$
Q.G.(d)Clerss frequency cf

$20-40$	10	10
$40-60$	12	22
$60-80$	14	36
$80-100$	13	49
$100-120$	17	66

$$
n_{2}=33
$$

mediancless (d) Answers
$60-80$
5. Mean and median of some data are 32 and 30 respectively. Using empirical relation, mode of the data is :
(a) 36
(b) 26
(c) 30
(d) 20

Qr. (b)

$$
\begin{aligned}
\text { mode } & =3 \times \text { re dian }-2 \text { mean } \\
\text { mode } & =3 \times 30-2 \times 32 \\
& =90-64=26 \text { (b) Arswe }
\end{aligned}
$$

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3
6. In two triangles $\triangle P Q R$ and $\triangle A B C$, it is given that $\frac{A B}{B C}=\frac{P Q}{P R}$. For these two triangles to be similar, which of the following should be true ?
(a) $\angle \mathrm{A}=\angle \mathrm{P}$
(b) $\angle \mathrm{B}=\angle \mathrm{Q}$
(c) $\angle \mathrm{B}=\angle \mathrm{P}$
(d) $\mathrm{CA}=\mathrm{QR}$

$$
\text { Q.6(C) } \frac{A B}{B C}=\frac{P O}{P \cdot R} \quad \begin{aligned}
& B \leftrightarrow P \\
& \\
& B
\end{aligned}
$$

(C) $\angle B=\angle P$ Answers
7. If $\sin \theta=\frac{3}{4}$, then $\frac{\left(\sec ^{2} \theta-1\right) \cos ^{2} \theta}{\sin \theta}$ equals :
(a) $\frac{3}{5}$
(b) $\frac{3}{4}$
(c) $\frac{4}{3}$
(d) $\frac{9}{16}$
Q. $7 b) \sin \theta=3 / 4$

$$
\begin{aligned}
& \frac{\left(\sec ^{2} \theta-1\right) \cos ^{2} \theta}{\sin \theta}=\frac{\left(\frac{1-1}{\cos ^{2} \theta}\right) \cos ^{2} \theta}{\sin \theta} \\
& =\frac{\left(1-\cos ^{2} \theta\right) \times \cos 4 \theta}{\cos \frac{\sin \theta}{\sin \theta}}=\frac{\sin ^{2} \theta}{\sin \theta}=\sin \theta=3 / 4 \text { (b) A } \text { (s }
\end{aligned}
$$

8. The $8^{\text {th }}$ term of an A.P. is 17 and its $14^{\text {th }}$ term is 29 . The common difference of this A.P. is :
(a) 3
(b) 2
(c) 5
(d) -2

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3
(8) (b) $a_{8}=a+7 d=17$
$a_{11}=a+13 d=29$

$\begin{array}{ll}\text { sub eq (0) form } \\ \text { eq). } \\ \frac{G d}{d}=12\end{array} a=3$ (b) Ass
9. In the given figure, O is the centre of the circle and PA is a tangent to the circle. If $\angle \mathrm{OAB}=60^{\circ}$, then $\angle \mathrm{OPA}$ is equal to :

(a) 60°
(b) 30°
(c) 15°
(d) 20°
(a) (b)

$$
\begin{aligned}
& O A=O B \rightarrow \text { radius } \\
& \angle A=60^{\circ}=\angle 0^{\circ}=\angle B^{\circ}
\end{aligned}
$$

$\triangle O A B \rightarrow$ equilateral triasegle

$$
\angle O P A=90^{\circ}-60^{\circ}=30^{\circ} \text { (b) Answer }
$$

10. One card is drawn at random from a well shuffled deck of 52 playing cards. The probability that it is a red king is :
(a) $\frac{1}{52}$
(b) $\frac{1}{26}$ (a)csolvs (b)
(c) $\frac{2}{26}$
(d) $\frac{2}{13}$

Use link given in description to download this PDF

SOLUTIONS : $10^{\text {th }}$ CBSE MATHS 2023 BASIC SET 3 CODE 430/5/3

11. If the lines represented by equations $3 x+2 m y=2$ and $2 x+5 y+1=0$ are parallel, then the value of m is :
(a) $\frac{2}{5}$
(b) $-\frac{5}{4}$ Q.ll (d)for paralliee $\frac{3}{2}=\frac{2 m}{5} \neq \frac{-2}{7}$
(c) $\frac{3}{2}$
(d) $\frac{15}{4}$
$15=u m \rightarrow m=15 / 4 \quad$ (d) A_{x}
12. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their perimeters are 32 cm and 24 cm respectively. If $A B=10 \mathrm{~cm}$, then $D E$ equals :
(a) 8 cm
(b) 7.5 cm
(c) 15 cm
(d) $5 \sqrt{3} \mathrm{~cm}$
Q.12. (b) $\frac{A B}{D \varepsilon}=\frac{10}{D \varepsilon}=\frac{224}{243} \quad(\underline{p}=7 \times \mathrm{cm}(b) A A P$
13. The two roots of the equation $3 x^{2}-2 \sqrt{6} x+2=0$ are :
(a) real and distinct
(b) not real

C
(c) real and equal
(d) rational
14. If $\sin \theta=\frac{a}{b}$, then $\sec \theta$ is equal to $\left(0 \leq \theta \leq 90^{\circ}\right)$:
(a) $\frac{a}{\sqrt{b^{2}-a^{2}}}$
(c) $\frac{\sqrt{\mathrm{b}^{2}-\mathrm{a}^{2}}}{\mathrm{~b}}$

(d) $\frac{\sqrt{b^{2}-\mathrm{a}^{2}}}{\mathrm{a}}$
\rightarrow

Use link given in description to download this PDF

SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3

16. The values) of k for which the roots of quadratic equation $x^{2}+4 x+k=0$ are real, is :
(a) $k \geq 4$
(b) $\mathrm{k} \leq 4$
(c) $\mathrm{k} \geq-4$
(d) $\mathrm{k} \leq-4$
(16) (b) $x^{2}+4 x+k=0$ $D=\sqrt{(4)^{2}-4 k \times 1} \geq 0$
$16-4 k \geq 0$ $16 \geq 4 k$
$4 \geq k$ (b) Ar s
17. HCF of $\left(3^{4} \times 2^{2} \times 7^{3}\right)$ and $\left(3^{2} \times 5 \times 7\right)$ is :
(a) 630
(A)(b) HCF $=3^{2} \times 7=63$ (b) Ans
(b) 63
(c) 729
(d) 567
18. If one zero of the quadratic polynomial $k x^{2}+3 x+k$ is 2 , then the value of k is :

$$
\text { (1) (a) } P(2)=0
$$

(a) $-\frac{6}{5}$
$k(2)^{2}+3 \times 2+k$
$4 k+6+k=$
(b) $\frac{6}{5}$
(c) $\frac{5}{6}$ $5 k+6=$
(d) $-\frac{5}{6}$
19. Assertion (A) : 'The surface area of largest sphere that can be inscribed in a hollow cube of side ' a ' cm is $\pi \mathrm{a}^{2} \mathrm{~cm}^{2}$.
Reason (R) : The surface area of a sphere of radius ' r ' is $\frac{4}{3} \pi r^{3}$.
20. Assertion (A) : When two coins are tossed together, the probability of getting no tail is $\frac{1}{4}$.

Reason (R) : The probability $\mathrm{P}(\mathrm{E})$ of an event E satisfies $0 \leq \mathrm{P}(\mathrm{E}) \leq 1$.

A Premier Institute for

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3
21. In the given figure, tangents AB and AC are drawn to a circle centred at O. If $\angle O A B=60^{\circ}$ and $O B=5 \mathrm{~cm}$, find lengths $O A$ and $A C$.

(21) $\operatorname{section}(B)$

$\frac{5 \sqrt{3} 30}{3} \frac{5}{\sqrt{3}}=C A$

$$
\begin{aligned}
& \sin 6 \circ^{\circ}=\frac{5}{O A}=\frac{\sqrt{3}}{2} \\
& \frac{10}{\sqrt{3}} \mathrm{~cm}=O A \\
& O 8 \frac{1 O \sqrt{3}}{3} \mathrm{~cm}
\end{aligned}
$$

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3
22. Find the sum of the first 20 terms of the A.P. : $-\frac{29}{3},-9,-\frac{25}{3},-\frac{23}{3}, \ldots .$. .
(22)

$$
\begin{aligned}
a & =\frac{-29}{3} \quad d=-9+\frac{29}{3}=\frac{2}{3}: s_{20}=\frac{n}{2}[2 a+(n-1) d] \\
s_{20} & =\frac{-29}{6} 10\left[\frac{-29}{3}+19 \times \frac{2}{3}\right]=10\left[\frac{-29}{3}+\frac{38}{3}\right] \\
& =10 \times \frac{9^{3}}{3}=30 .
\end{aligned}
$$

23. (a) Evaluate :

$$
\frac{\sin 30^{\circ}+\tan 45^{\circ}}{\sec 30^{\circ}+\cot 45^{\circ}}
$$

OR
(b) For $\mathrm{A}=30^{\circ}$ and $\mathrm{B}=60^{\circ}$, verify that :

$$
\sin (A+B)=\sin A \cos B+\cos A \sin B
$$

(23)

$$
\begin{aligned}
& \frac{\sin 30^{\circ}+\tan 45^{\circ}}{\sec 30^{\circ}+\cot 4 i^{\circ}}=\frac{2+1}{\frac{2}{\sqrt{3}}+1}=\frac{\frac{3}{2}}{\frac{2+\sqrt{3}}{\sqrt{3}}}=\frac{3}{2} \times \frac{\sqrt{3}}{2 \sqrt{3}} \\
&= \frac{3}{2} \times(\sqrt{3} \\
&= \frac{3(\sqrt{3}+2)}{2} \times(\sqrt{3}-3) \\
&(\sqrt{3}-2)
\end{aligned}
$$

23 (ok) (b)

$$
\begin{aligned}
\text { LHS } & =\sin \left(30^{\circ}+60^{\circ}\right)=\sin 90^{\circ}=\alpha \\
\text { RUS } & =\sin 30^{\cos 60^{\circ}+\cos 30 \sin 60^{\circ}} \\
& =\frac{1}{2} \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=2 .
\end{aligned}
$$

Enhancing ability to learn \& Express

Use link given in description to download this PDF

SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3

24. Find LCM of $\mathbf{4 8 0}$ and 256 using prime factorization.

25. (a) Show that $\mathrm{A}(1,2), \mathrm{B}(5,4), \mathrm{C}(3,8)$ and $\mathrm{D}(-1,6)$ are vertices of a parallelogram ABCD .

OR

(b) Show that the points $\mathrm{A}(3,0), \mathrm{B}(6,4)$ and $\mathrm{C}(-1,3)$ are vertices of a right-angled triangle.
(28)

$$
\begin{aligned}
& D(-1,6) \\
& A(1,2) \\
& A B=\sqrt{(5-1)^{2}+(4-2)^{2}}=\sqrt{20} \\
& B C=\sqrt{(5-3)^{2}+(8-4)^{2}}=\sqrt{20} \\
& C D=\sqrt{\left((4)^{2}+(3+1)^{2}+(8-6)^{2}\right.}=\sqrt{16+4}=\sqrt{20} \\
& D A=\sqrt{(2)^{2}+4^{2}}=\sqrt{20}
\end{aligned}
$$

$A C=\sqrt{4+36}=\sqrt{40}$ Hence, $A B=C D$, sides
$B D=\sqrt{6^{2}+2^{2}}=\sqrt{40} \quad$ \& $A D=B C$ of 1 gm$]$
$\& A C=D B$ (ptagorals)
Thus, the given $A B C D$ ill gm,

OR

$A B=\sqrt{(6-3)^{2}+4^{2}}=\sqrt{3^{2}+4^{2}}=5$ unit
$B C=\sqrt{7^{2}+2^{2}}=\sqrt{50}=5 \sqrt{2}$ unit
$A C=\sqrt{4^{2}+3^{2}}=\sqrt{25}=5$ unit
So, $(A B)^{2}+\left(B O^{2}=(B C)^{2}\right.$ proved
26. Find mean of the following data :

Class	$0-15$	$15-30$	$30-45$	$45-60$	$60-75$	$75-90$
Frequency	12	15	11	20	16	6

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3

26

$$
\begin{aligned}
& \text { Clots } \\
& \text { 0-15 } \\
& \text { 15-30 } \\
& \text { 30-45 } \\
& \text { 45-60 } \\
& \text { 60-75 } \\
& 75-90 \\
& \bar{x}=\frac{\sum \text { Sine }^{\prime}}{\sum \delta_{1}}=\frac{3465}{80}=43.31
\end{aligned}
$$

27. (a) Determine the ratio in which the point $\mathrm{P}(\mathrm{a},-2)$ divides the line segment joining the points $A(-4,3)$ and $B(2,-4)$. Also, find the value of ' a '.

OR
(b) In the given figure, in $\triangle \mathrm{ABC}$ points D and E are mid-points of sides $B C$ and $A C$ respectively. If given vertices are $A(4,-2), B(2,-2)$ and $C(-6,-7)$, then verify the result $\mathrm{DE}=\frac{1}{2} \mathrm{AB}$.

Use link given in description to download this PDF
(27) (a)

Letratio kill
using section formula

$$
x=\frac{2 k+(-4)}{k+1} 8 y=\frac{-4 k+3}{k+1}
$$

which is equal to as -2.

$$
\begin{aligned}
& \frac{-4 k+3}{k+1}=-2 \quad \rightarrow \quad-4 k+3=-2 k-2 \\
& 5=-2 k+4 k=2 k \\
& k=8 / 2
\end{aligned}
$$

So, ratio will be 5:2.
(b) $O R$

$$
\begin{aligned}
& a=\frac{2 \times 5-4 \times 2}{7}=\frac{10-8}{7}=\frac{2}{7} \text { Ass } \\
& \frac{B(2,-2)}{A(4,-2)}
\end{aligned}
$$

AS D\& $\&$ are mid-poitsof $B C$ \& $A C$ respectively.

$$
\begin{aligned}
D=\text { mid-ptof } \cdot B C & =\left(\frac{2-6}{2}, \frac{-2-7}{2}\right) \\
& =\left(-2,-\frac{9}{2}\right) \\
E=\text { mid-ptof } A C & =\left(\frac{4-6}{2}, \frac{-2-3}{2}\right)
\end{aligned}
$$

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3

$$
\begin{array}{ll}
P E=\sqrt{(-2+1)^{2}}+0^{2}=2 & =\left(-1,-\frac{9}{2}\right) \\
A B=\sqrt{(1-2)^{2}+0^{2}}=2=\frac{A B \times \frac{1}{2}=D E}{}
\end{array}
$$

28. ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$, circumscribed about a circle.

Prove that BC is bisected at E.

(28)

Given $A B=A C$

$$
\begin{align*}
A D+D B & =A F+F C \\
\text { os } \quad A D & =A F(10.2) \\
\Rightarrow \quad D B & =F C \tag{2}
\end{align*}
$$

Now. from $(20.2) \quad B D=B E$
and $C F=C E$
from eq (2), (3), (4)

$$
B E=E C
$$

which means E is bisector of $B C$.
29. Prove that :

$$
\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}=2 \operatorname{cosec} \theta
$$

Use link given in description to download this PDF
SOLUTIONS : $10^{\text {th }}$ CBSE MATHS 2023 BASIC SET 3 CODE 430/5/3
(29)

$$
\begin{aligned}
& L H S=\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}} \\
& =\frac{\sqrt{\sec \theta+1}}{\sqrt{\sec \theta+1}+\frac{\sqrt{\sec \theta+1}}{\sqrt{\sec \theta-1}} \text {. }} \\
& =\frac{(\sqrt{(\sec \theta+1)})^{2}+(\sqrt{\sec \theta+1})^{2}}{\sqrt{\sec ^{2} \theta-1}} \\
& =\frac{\sec \theta-1+\sec \theta+1}{\sqrt{\tan ^{2} \theta}}=\frac{2 \sec \theta}{\operatorname{san} \theta}=\frac{20 \times \cos \theta}{\cos \theta \times \sin \theta} \\
& =\frac{2.0}{\sin 0}=\frac{2 \cos 60}{=R+5}
\end{aligned}
$$

30. (a) Sabina went to a bank ATM to withdraw $₹ 2,000$. She received ₹ 50 and ₹ 100 notes only. If Sabina got 25 notes in all, how many notes of ₹ 50 and ₹ 100 did she receive?

OR
(b) Five years ago, Amit was thrice as old as Baljeet. Ten years hence, Amis shall be twice as old as Baljeet. What are their present ages ?

Use link given in description to download this PDF
(30) Given Let SO $z \rightarrow x$ notes

$$
\begin{equation*}
\text { LODz } \rightarrow \text { y notes } \tag{1}
\end{equation*}
$$

total notes $x+y=25$

$$
\begin{align*}
\text { Aroust } & =2000 \\
50 x+200 y & =2000 \tag{2}\\
\text { eq(1) } \times 50 \Rightarrow \quad 50 x+50 y & =1280 \\
50 x+100 y & =2000 \\
0-50 y & =-750 \\
y & =\frac{+754}{750}=15 \\
y & =15 \text { rates }
\end{align*}
$$

30 (b) AMIT'S present age $=x$, Baljeet's Present age $=y$
5 years ago, $(x-5)=3(y-5)=>\quad x-3 y=-10----(1)$
10 years hence $(x+10)=2(y+10)=>\quad x-2 y=10 \ldots$ (2)
On elimination, $y=20, x=50$ so Ambit's Age $=50$ Yrs, Ballet's Age $=20$ Yrs
31. Prove that $11+3 \sqrt{2}$ is an irrational number, given that $\sqrt{2}$ is an irrational number.

Use link given in description to download this PDF
(5) Given $\sqrt{2}$ is an irrational. Let $12+3 \sqrt{2}$ lirational
so

$$
\begin{aligned}
& \begin{array}{r}
1++3 \sqrt{2}=\frac{a}{b} \quad(\text { asbcoprimes integer) } \\
b \neq 0 \\
3 \sqrt{2}=\frac{a}{b}-11 \quad \text { (ratiorat rational } \\
\text { = rational } \\
\text { i } \theta \sqrt{2}=\left(\frac{a}{b}-11\right) \div 3 \text { (rational } \div \text { rationed } \\
\text { = rational.) }
\end{array}
\end{aligned}
$$

In pits rational divided by rational gives rectiosal but inLHS $\sqrt{2}$ is oration incl no. so ow assumption "leroy bee Jrational \neq rational Hence, $\quad \alpha+3 \sqrt{2}$ is rational ho.
32. (a) Divide 16 into two parts such that twice the square of the greater part, exceeds the square of the smaller part by 164.

OR
(b) A motor boat whose speed is $18 \mathrm{~km} / \mathrm{h}$ in still water takes 1 hour more to go 24 km upstream, than to return to the same point. Find the speed of the stream and total time of the journey.

Use link given in description to download this PDF
(32) (a) Let two pot be x and $16-x$

Ale to question

$$
\begin{gathered}
2 x^{2}-(16-x)^{2}=164 \\
2 x^{2}-\left(256+x^{2}-32 x\right)=164 \\
2 x^{2}-256-x^{2}+32 x=164 \\
x^{2}+32 x+256-164=0 \\
x^{2}+32 x+92=0 \\
x=-32 \pm \sqrt{1024-4 \times 92} \\
x^{2}+32 x-256-264=0 \\
x=-\frac{32 \pm \sqrt{32^{2}+4 \times 420}}{2}=\frac{-32 \pm \sqrt{1024+1680}}{2} \\
=\frac{-32 \pm \sqrt{2704}}{2}=\frac{-32 \pm 52}{2}=\frac{-32+52}{2}, \frac{-32-52}{2} \\
=\frac{20}{2} \frac{-84}{2}=101-42
\end{gathered}
$$

first no's 10 and smaller rolls $(56-10)=6$. Ax

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3
(32) OR Let

$$
\text { speed of } \text { man }=28 \mathrm{~km} / \mathrm{hr}
$$

Speed of river $=x$

$$
\text { speedin upstream }=(18-x) \mathrm{km}(\mathrm{hr}
$$

Speed in downstream $=(18+x) \mathrm{km} / \mathrm{hr}$
Alcto question

$$
\begin{gathered}
\frac{24}{18-x}-\frac{24}{18+x}=1 \\
24\left[\frac{1}{18-x}-\frac{1}{18+x}\right]=1 \\
{\left[\frac{18+x-18+x}{18^{2}-x^{2}}\right]=\frac{1}{24}} \\
2 x \times 24=324-x^{2} \\
48 x=324-x^{2} \\
\\
x=\frac{x^{2}+48 x-324=0}{2}=\sqrt{48^{2}+4 \times 324 \times 1}=-48 \pm \sqrt{3600} \\
x=
\end{gathered}
$$

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3
33. If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, then prove that the other two sides are divided in the same ratio.

Q33. Sol: ReforNCERT (Theorem.BPT) Ch-6 Triangles
34. From the top of a building 50 m high, the angles of depression of the top and bottom of a tower are observed to be 30° and 60°. Find the height of the tower and distance between the building and the tower.
$03 u$

$$
\begin{aligned}
& \tan 30=\frac{(50-h)}{x} \\
& \frac{1}{\sqrt{3}}=\frac{(50-h)}{x} \\
& x \times \frac{1}{\sqrt{3}}=50-h \\
& \frac{50}{\sqrt{3}} \times \frac{1}{\sqrt{3}}=50-h \\
& \frac{50}{3}=50-h \\
& 50=150-3 h \\
& 3 h=100 \\
& h=\frac{100}{3} \mathrm{~m}
\end{aligned}
$$

Use link given in description to download this PDF

 SOLUTIONS : $10^{\text {th }}$ CBSE MATHS 2023 BASIC SET 3 CODE 430/5/335. (a) In the given figure, AB is a chord of a circle of radius 7 cm and centred at O. Find the area of the shaded region if $\angle A O B=90^{\circ}$. Also, find length of minor arc AB .

OR 10.5 cm respectively and centred at 0 . Find the area of the shaded region if $\angle A O B=60^{\circ}$. Also, find the length of are $C D$.

Use link given in description to download this PDF
SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3
(35)

$$
\begin{aligned}
& r=7 \mathrm{~cm} \\
& \text { area cf shaded } \\
& \text { region }=\frac{96}{360^{\circ}} \times \pi(7)^{2}-\frac{1}{2} \times 7 \times A \\
&=\frac{1}{6} \times \frac{20}{7} \times 4 \times 7-\frac{49}{2} \\
&=\frac{77}{2}-\frac{49}{2}=\frac{28 \mathrm{~cm}^{2}}{2} \\
&=14 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Lergthof minararc }=\frac{1}{6} \times \ngtr \frac{20}{7} \times 7=11 \mathrm{~cm} \text {. }
$$

area of shaded region
$20.5=\frac{1}{2} \int_{0}^{60} \sqrt[60]{3} / 6=7 \frac{7}{2} \mathrm{~cm}$

$$
\begin{aligned}
& =\frac{60^{\circ}}{360^{\circ}} \pi\left(\frac{21}{2}\right)^{2}-\frac{60}{360^{\circ}} \pi\left(\frac{7}{2}\right)^{2} \\
& =\frac{60}{360} \times \pi\left[\left(\frac{21}{2}\right)^{2}+\left(\frac{7}{2}\right)^{2}\right] \\
& =\frac{1}{6} \times \frac{22}{7}\left[\frac{31}{2}+\frac{8}{2}\right]\left[\frac{21}{2}-\frac{3}{2}\right] \\
& =\frac{1}{6} \times \frac{22}{7} \times \frac{28}{7} \times \frac{14}{2} \\
& =\frac{14 \times 11}{3}=\frac{154}{3}=51.33 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Lergthof } \cos C D=\frac{601}{360} \times 7 \times \frac{22}{7} \times \frac{242^{2}}{x}=11 \mathrm{~cm}
$$

SECTION E

This section comprises 3 case study bosed questions of 4 marks each.

$$
\text { Case Study - } 1
$$

36. Singing bowls (hemispherical in shape) are commonly used in sound healing practices. Mallet (cylindrical in shape) is used to strike the bowl in s sequence to produce sound and vibration.

One such bowl is shown here whose dimensions are :
Hemispherical bowl has outer radius 6 cm and inner radius 5 cm .
Mallet has height of 10 cm and radius 2 cm .
Based on the above, answer the following questions :
(i) What is the volume of the material used in making the mallet ?

The bowl is to be polished from inside. Find the inner surface area ${ }_{o f}$ the bowl.

Find the volume of metal used to make the bowl.
OR

$$
\text { (b) Find total surface area of the mallet. (Use } \pi=3 \cdot 14 \text {) }
$$

Use link given in description to download this PDF
SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 BASIC SET 3 CODE 430/5/3
section E
(36)

(i) Vol. of mallet $=\pi r^{2} \mathrm{~h}=\frac{22}{7} \times 2 \times 2 \times 20=\frac{880}{7} \mathrm{~cm}^{3}$
(ii) A of $B o w l=2 \pi r^{2}=2 \times \frac{22}{7} \times(5)^{2}=\frac{44 \times 25}{7}=\frac{1100}{7} \mathrm{~cm}^{2}$
(iii)

$$
\begin{aligned}
\text { Vol. of Bol } & =\frac{2}{3} \pi R_{2}^{3}-\frac{Q}{3} \pi R_{1}^{3} \\
& =\frac{2}{3} \pi\left(R_{2}^{3}-R_{1}^{3}\right) \\
& =\frac{2}{3} \times \frac{22}{7}\left(6^{3}-5^{3}\right)=\frac{44}{2 T} \times 9+13=\frac{572}{3} \mathrm{~cm}^{3}
\end{aligned}
$$

OR

$$
\begin{aligned}
\text { TSA of mallet } & =2 \pi r(r+h) \\
& =2 \times \frac{22}{7} \times 2(2+10) \\
& =2 \times \frac{22}{7} \times 2 \times 12 \\
& =\frac{1056}{7}=150.85 \mathrm{~cm}^{2}
\end{aligned}
$$

SOLUTIONS : $10^{\text {th }}$ CBSE MATHS 2023 BASIC SET 3 CODE 430/5/3

Case Study - 2

Rainbow is an arch of colours that is visible in the sky after rain or when 37. water droplets are present in the atmosphere. The colours of the rainbow are gencrally, red, orange, yellow, green, blue, indigo and violet. Each colour of the rainbow makes a parabola. We know that any quadratic polmomial $p(x)=a x^{2}+b x+c(a \neq 0)$ represents a parabola on the graph

Based on the above, answer the following questions:
(i) The graph of a rainbow $y=f(x)$ is shown in the figure. Write the number of zeroes of the curve.
(ii) If the graph of a rainbow does not intersect the x -axis but intersects y-axis at one point, then how many zeroes will it have?
(a) If a rainbow is represented by the quadratic polynomial $p(x)=x^{2}+(a+1) x+b$, whose zeroes are 2 and -3 , find the value of a and b.
(iii) (b) The polynomial $\mathrm{x}^{2}-2 \mathrm{x}-(7 \mathrm{p}+3)$ represents a rainbow. If -4 is a zero of $i t$, find the value of p.

Use link given in description to download this PDF
SOLUTIONS : $10^{\text {th }}$ CBSE MATHS 2023 BASIC SET 3 CODE 430/5/3
(at) (i) No. of zeros $=2$
(ii) No zeros. (0)
(iii)

$$
\begin{array}{rl}
P(x) & =x^{2}+(a+1) x+b \quad \alpha=2, \quad B=-3 \\
\alpha+B=2-3 \quad \alpha B=2 x-3=-6 \\
& =-1 \\
\alpha+B=-(a+1)=-1 & \alpha B=b \\
a+1=1 & -6=b \\
a=0 & b=-6
\end{array}
$$

OR $P(x)=x^{2}-2 x-(7 p+3) \cdot I f-4$ is a zee then

$$
\begin{aligned}
& p(-u)=0 \\
& 0=(-u)^{2}-2(-u)-(7 p+3) \\
& =16+8-7 p-3=0 \\
& 2 u-3-7 p=0 \\
& 21=7 p \Rightarrow p=3
\end{aligned}
$$

Case Study -3

Sone students were asked to list their favourite colour. The measure of 20
each colour is shown by the central and angle of a pie chart given below :

Study the pie chart and
answer the following questions :
(i) If a student is chosen at random, then find the probability of
(ii) What is the probability of his/her favourite colour being blue or green?
(iii) (a) If 15 students liked the colour yellow, how many students
participated in the survey?

OR

(iii)
(b) What is the probability of the favourite colour being red or

Use link given in description to download this PDF
SOLUTIONS : $10^{\text {th }}$ CBSE MATHS 2023 BASIC SET 3 CODE 430/5/3
(38)
(i) $P($ coste $)=\frac{120}{360}=\frac{1}{3}$
(ii) $P($ Bluporgreen $)=\overline{60+60} 3360=\frac{120}{360}=\frac{1}{3}$
(iii) Noon students like yellow $=15 \sim 90^{\circ}$
of for $360^{\circ} \rightarrow$ total students $=15 \times 4=60$
(iii)

$$
P(\text { Ped or Blue })=\frac{90^{\prime}}{360^{\circ}}=\frac{1}{4}
$$

