$12^{\text {th }}$ CBSE CHEM SET -1 CODE 56/3/1

1. Which of the following does not show variable oxidation states?
(A) Fe
(B) Cu
(C) Mn

2. The type of isomerism shown by the complex $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$is :
(A) Ionisation isomerism
(B) Geometrical isomerism.

(C) Linkage isomerism
(D) Coordination isomerism
3. Which of the following is diamagnetic in nature?
(A) Co^{3+}, octahedral complex with strong field ligand
(B) Co^{3+}, octahedral complex with weak field ligand
(C) Co^{3+}, in a square planar complex

(D) Co^{3+}, in a tetrahedral complex
[Atomic number: $\mathrm{Co}=27$]

$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1

4. Consider the following reaction :

The major product of the reaction is :
(A)

(B)

(D)

5. Which one of the following compounds has the lowest pK_{a} value?
(A) p-Cresol
(B) \quad-Nitrophenol
(C) m-Nitrophenol
(I) 2,4,6-Trinitrophenol.
6. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{O}-\mathrm{CH}_{3}$ when treated with HI gives :
(A) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{I}+\mathrm{CH}_{3} \mathrm{OH}$ 。
(B) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{OH}+\mathrm{CH}_{3}-\mathrm{I}$
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{I}+\mathrm{CH}_{3}-\mathrm{I}$

(D) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH}$

Core Academy, $1^{\text {st }} \& 2^{\text {nd }}$ Floor above Dr. Rakshit Dental Clinic, Mission Hospital Road, Bilaspur

$12^{\text {th }}$ CBSE CHEM SET -1 CODE 56/3/1

7. Which of the following compounds on treatment with benzene sulphonyl choride forms an alkali-soluble precipitate?

(A) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$

(B) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$

(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$.
8. The order of increasing basicities of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ (I), $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ (II), $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ (III) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ (IV) in aqueous media is :
(A) IV $<$ III $<$ I $<$ II.
(B) II $<$ I $<$ IV $<$ III

(C) I $<$ II $<$ III $<$ IV
(D) II $<$ III $<$ I $<$ IV

$12^{\text {th }}$ CBSE CHEM SET -1 CODE 56/3/1

9. The vitamin which plays an important role in coagulating blood is :
(A) Vitamin A
(B) Vitamin E
(C) Vitamin D

(D) Vitamin K
10. When a catalyst increases the rate of a chemical reaction, then the rate constant (k) :
(A) remains constant
(B) decreases
(C) increases
(D) may increase or decrease depending on the order of the reaction
11. A 1% solution of solute ' X ' is isotonic with a 6% solution of sucrose (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$). The molar mass of solute ' X ' is :
(A) $34 \cdot 2 \mathrm{~g} \mathrm{~mol}^{-1}$
(B) $57 \mathrm{~g} \mathrm{~mol}^{-1}$
(C) $114 \mathrm{~g} \mathrm{~mol}^{-1}$
(D) $3.42 \mathrm{~g} \mathrm{~mol}^{-1}$

$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1

12. During the electrolysis of aqueous NaCl , the cathodic reaction is :
(A) Oxidation of Cl^{-}ion
(B) Reduction of Na^{+}ion
(C) Oxidation of $\mathrm{H}_{2} \mathrm{O}$

(D) Reduction of $\mathrm{H}_{2} \mathrm{O}$.

For Questions number 13 to 16, two statements are given - one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.
(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
(C) Assertion (A) is true, but Reason (R) is false.
(D) Assertion (A) is false, but Reason (R) is true.
13. Assertion (A) : Addition of ethylene glycol to water lowers its freezing point.

Reason (R) : Ethylene glycol is insoluble in water due to lack of its ability to form hydrogen bonds with water molecules.

For more details, Call or Visit
Core Academy, $1^{\text {st }} \& 2^{\text {nd }}$ Floor above Dr. Rakshit Dental Clinic, Mission Hospital Road, Bilaspur

$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1

14. Assertion (A): Order of reaction and molecularity are always same for d complex reactions.

Reason (R): Order is determined experimentally and molecularity is applicable only for elementary reactions.
15. Assertion (A) : The boiling point of ethanol is higher than that of dimethyl ether.

Reason (R): Ethanol molecules are associated through hydrogen a bonding whereas in dimethyl ether, it is not possible.
16. Assertion (A) : Aniline does not undergo Friedel-Crafts reaction.

Reason (R): Friedel-Crafts reaction is an electrophilic substitution
 b reaction.
17. (a) Define molal depression constant. How is it related to enthalpy of fusion?

OR

(b) What type of deviation is shown by ethanol and acetone mixture ? Give reason. What type of azeotropic mixture is formed by that deviation?.
$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1
Ans. (17)
(a) Molal depression constant -

The depression in freezing point When one mole of the solute is dissolved in 1000 gm . of the solvent is called molal depression Constant.

- gt is expressed as $\mathrm{Kff}_{\mathrm{f}}$
- The relation between molal depression constant-CKy and enthalpy of fusion $(\triangle H)$ is given by the following equation -

$$
k_{f}=\frac{M_{A} \cdot R T_{f}{ }^{2}}{\Delta H_{f \text { HS }} \times 1000}
$$

Here $=M_{A}=$ Molar mass of solvent
$T_{f}=$ Freezing point of solvent-
$\Delta H_{f}=$ enthalpy of fusion.
$K_{f}=$ Molal depression constant-
$K=$ universal gas constant:-
(b) Mixture of ethanol and acetone shows positive deviation from Rout's Law.

In pure ethanol, Molecules are
hydrogen bonded. on adding acetone, its molecule get in between the host molcaule and break some of the hydrogen bonds between them.

- Upon mixing ethanol and acetone. they four minimum boiling azeotrope mixture.
$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1

18. (a) In a reaction, if the concentration of reactant ' X ' is tripled, the rate of reaction becomes twenty-seven times. What is the order of the reaction?
(b) State a condition under which a bimolecular reaction is kinetically a . first-order reaction. Give an example of such a reaction.
(9) Suppose the rote law for the given reaction is.

$$
\text { pate }=K[A]^{x}
$$

then.

$$
\begin{aligned}
& \frac{\text { initial }}{\text { rival }}=\frac{K\left[A_{1}\right]^{x}}{k}\left[A_{2}\right]^{x} \\
& \frac{9}{27-y}=\left[\frac{A}{3 A}\right]^{x} \\
& \frac{1}{27}=\left[\frac{1}{3}\right]^{x} \\
& \text { or } \\
& \text { or }(3)^{3}=(3)^{x} \\
& \text { or }(3)^{x}
\end{aligned}
$$

So, the order of reaction will be third. order.
(b) A bimolecular reaction cam be a first order creation kinetically, if one of the reactant is taken in access. In this condition the. concentration of the peationt. Which has taken in access doesn't affect the rate of reaction.
eg. Acid catalysed hydrolysis of ethyl acetate.
(Pseudo first order reaction)

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Pseudo first order } \\
\mathrm{CH}_{3}-\mathrm{C}-\mathrm{C}_{2} \mathrm{H}_{5}-+\mathrm{H}_{2} \mathrm{O} \text { (excess) }
\end{array} \xrightarrow{\mathrm{CH}_{3}-i \mathrm{C}-\mathrm{OH}} \begin{array}{l}
\text { O } \\
\\
+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
\end{array}
\end{array}
$$

19. Complete the following ionic equations :

$$
2 \times 1=2
$$

(a) $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{SO}_{3}^{2-}+6 \mathrm{H}^{+} \rightarrow$
(b) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow$

Sol. (19)
(9) $2 \mathrm{MnO}_{4}{ }^{-}+55 \mathrm{O}_{3}{ }^{-}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{+2}+$

$$
\text { 5 } 2 \mathrm{OL}_{4}{ }^{2-}+3 \mathrm{H}_{2} \mathrm{O}
$$

(b) $\mathrm{C}_{2} \mathrm{O}^{-2}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{+2} \longrightarrow 6 \mathrm{Fe}^{+3}+$

$$
2 \mathrm{CH}^{+3}+7 \mathrm{H}_{2} \mathrm{O}
$$

$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1

20. (a) Which halogen compound in the following pair will react faster in $\mathrm{S}_{\mathrm{N}} 2$ reactions and why?
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I} \quad$ OR $\quad \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$
(b) Why is chloroform stored in closed dark coloured bottles?

Sol. (20)
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I}$ Will react faster than
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$, because I Θ is good leaving
Group, them Br Θ. [Weak base are good
(b) Chloro form oxidised in presence of air and light and form toxic phosgene gas.
21. Give reaction of glucose with the following :
(a) HCN
(b) Conc. HNO_{3}

201n (2)
(a)

Saccharic acid.

For more details, Call or Visit

Core Academy, $1^{\text {st }} \& 2^{\text {nd }}$ Floor above Dr. Rakshit Dental Clinic, Mission Hospital Road, Bilaspur

$12^{\text {th }}$ CBS CHEM SET - 1 CODE 56/3/1

22. A solution is prepared by dissolving 5 g of a non-volatile solute in 200 g of water. It has a vapour. pressure of 31.84 mm Hg at 300 K . Calculate the molar mass of the solute.
(Vapour pressure of pure water at $300 \mathrm{~K}=32 \mathrm{~mm} \mathrm{Hg}$)

$$
\begin{aligned}
& \text { According to Raoult's } 1 \text { aw - } \\
& \frac{P_{B}-P_{S}}{0}=\frac{W_{B}}{M_{B}} \times \frac{M_{A}}{W_{A}} \\
& \frac{32-3 L .84}{32}=\frac{.5}{M_{B}} \times \frac{18}{200} \\
& M_{B}=90
\end{aligned}
$$

23. The conductivity of 0.2 M solution of KCl is $2.48 \times 10^{-2} \mathrm{~S} \mathrm{~cm}^{-1}$. Calculate its molar conductivity and degree of dissociation (α).

Given :

$$
\begin{aligned}
\lambda_{\mathrm{K}^{+}}^{0} & =73.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\
\lambda_{\mathrm{Cl}^{-}}^{0} & =76.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
\end{aligned}
$$

For more details, Call or Visit

Core Academy, $1^{\text {st }} \& 2^{\text {nd }}$ Floor above Dr. Rakshit Dental Clinic, Mission Hospital Road, Bilaspur
$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1
Sol. 23

$$
\begin{aligned}
\text { Molar conductivity } & =\frac{k \times 1000}{M} \\
& =\frac{2.48 \times 100 \times 1000}{0.2} \\
& =124 \mathrm{Smol}^{-1} \mathrm{~cm}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda_{m}^{0} & =\lambda_{k+}^{0}+\lambda_{\mathrm{cl}^{-}}^{0} \\
& =\left(73.5+76.5^{2} \$ \mathrm{~cm}^{2} \mathrm{~m}_{01}^{-1}\right. \\
& =150 \$ \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\
\alpha= & \frac{\lambda_{\mathrm{m}}^{0}}{\alpha}=\frac{124}{150}=0.82 \mathrm{or}
\end{aligned}
$$

風强
24. A first-order reaction is 25% complete in 40 minutes. Calculate the value of rate constant. In what time will the reaction be 80% complete?
[Given : $\log 2=0 \cdot 30, \log 3=0 \cdot 48, \log 4=0 \cdot 60, \log 5=0 \cdot 69$]
Sol. 24

$$
K=\frac{2 \cdot 303}{t} \log _{10}\left(\frac{a}{a-x}\right) \rightarrow \text { pate constant }^{t}
$$

$\because<$ Will be constant for the reaction at for the given temp., so.

$$
\underline{4_{0} \text { min }}<\frac{t_{1}}{t_{2}}=\frac{\log _{10}\left(\frac{a}{a-x}\right)_{25 \%}}{\log _{10}\left(\frac{a}{a-x}\right)_{80} \%}
$$

$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1
25. (a) What type of nucleophilic substitution ($\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$) occurs in the hydrolysis of 2 -Bromobutane to form (\pm)-Butan-2-ol ? Give reason.
(b) What happens when chlorobenzene and methyl chloride are treated with sodium metal in dry ether ?

\downarrow

(By the formation of pentavalent
(romsition state).
(b)

$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1

26. (a) Write the equations of the reactions involved in the following :
(i) Reimer-Tiemann reaction
(ii) Kolbe's reaction
(b) Name the reagent used in the bromination of phenol to form 2,4,6-Tribromophenol.

$$
\mathrm{CH}_{3}-\mathrm{CH}_{3}
$$

$$
\text { lysis }+2 \mathrm{CO}_{2}
$$

(b)

27. How will you bring about the following conversions? (any three)
(a) Benzoic acid to Benzaldehyde
(b) Ethanal to Propanone
(c) Acetophenone to Benzoic acid
(d) Bromobenzene to 1-Phenylethanol

$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1

Sol.

(a)

Heluetion

$$
\mathrm{CH}_{3}-\stackrel{i}{\mathrm{C}}-\mathrm{H} \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{CH}_{3} \mathrm{MgBr}}
$$

(d)

$$
\xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{CH}_{3} \mathrm{CHO}^{-}}
$$

$\mathrm{H}_{3} \mathrm{O}^{(4)}$
28. Give the structures of A, B and C in the following reactions :

$$
2 \times 1 \frac{1}{2}=3
$$

(a) $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} \xrightarrow{\mathrm{KCN}} \mathrm{A} \xrightarrow{-\mathrm{LiAlH}_{4}} \mathrm{~B} \xrightarrow[0^{\circ} \mathrm{C}]{\mathrm{HNO}_{2}} \mathrm{C}$
(b)

Core Academy, $1^{\text {st }} \& 2^{\text {nd }}$ Floor above Dr. Rakshit Dental Clinic, Mission Hospital Road, Bilaspur
$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1
Sol ${ }^{2}$.
(28)
(b)

(A)

(B)

(13)

$12^{\text {th }}$ CBSE CHEM SET -1 CODE 56/3/1

29. The involvement of $(n-1) d$ electrons in the behaviour of transition elements impart certain distinct characteristics to these elements. Thus, in addition to variable oxidation states, they exhibit paramagnetic behaviour, catalytic properties and tendency for the formation of coloured ions. The transition metals react with a number of non-metals like oxygen, nitrogen and halogens. KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are common examples.

The two series of inner transition elements, lanthanoids and actinoids, constitute the f-block of the periodic table. In the lanthanoids, there is regular decrease in atomic size with increase in atomic number due to the imperfect shielding effect of 4f-orbital electrons which causes contraction. Answer the following questions :
(a) Why do transition metals and their compounds act as good catalysts?
(b) What is the cause of contraction in the atomic size of lanthanoids ?
(c) Define lanthanoid contraction. How does it affect the atomic radii of the third transition series and the second transition series?

OR

(c) In aqueous media, which is a stronger reducing agent Cr^{2+} or Fe^{2+} and why ?
$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1
201^{n} (29)
(a) Due to the tendency to adopt multiple oxidation states and to form complexes.
(b) Poor shielding effect of $4 f$ electrons
(c) Do it yourself.

$$
0 \%
$$

(C) $C y+2$ is stranger reducing agent, because in formation of coy +2 to $c y+3$ changes is from d^{4} to d^{3}. In d^{3} electronic configuration $t_{2} g$ orbital is half filled.

$12^{\text {th }}$ CBSE CHEM SET -1 CODE 56/3/1

30. Proteins are the most abundant biomolecules of the living system. Proteins are the polymers of about twenty different α-amino acids which are linked by peptide bonds. Ten amino acids are called essential amino acids. In zwitter ionic form, amino acids show amphoteric behaviour as they react both with acids and bases.

On the basis of their molecular shape, proteins are classified into two types : Fibrous and Globular proteins. Structure and shape of proteins can be studied at four different levels i.e., primary, secondary, tertiary and quaternary, each level being more complex than the previous one. The secondary or tertiary structure of proteins get disturbed on change of pH or temperature and they are not able to perform their functions. This is called denaturation of proteins.

Answer the following questions :
(a) What are essential amino acids ?
(b) What is meant by zwitter ionic form of amino acids?
(c) (i) Give one example each for Fibrous protein and Globular protein.
(ii) What type of linkages hold monomers of proteins together ?. $2 \times 1=2$

OR

(c) (i) What is the structural feature which characterises a reducing sugar?
(ii) What is the structural difference between nucleoside and nucleotide ?

$$
2 \times 1=2
$$

For more details, Call or Visit
Core Academy, $1^{\text {st }} \& 2^{\text {nd }}$ Floor above Dr. Rakshit Dental Clinic, Mission Hospital Road, Bilaspur

$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1

(a) Do it yourself
(b) Do it yourself.
(c) (i) Fibrous protein \rightarrow Keratin Globular protein \rightarrow Haemoglobin.
(ii) Peptide bond.

02

(ii)
do it
yourself
Do it
yourself ff.
31. (a) (i) Calculate emf of the following cell at $25^{\circ} \mathrm{C}$:

$$
\mathrm{Zn}(\mathrm{~s})\left|\mathrm{Zn}^{2+}(0.001 \mathrm{M})\right|\left|\mathrm{Cd}^{2+}(0.1 \mathrm{M})\right| \mathrm{Cd}(\mathrm{~s})
$$

Given : $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\mathrm{o}}=-0.76 \mathrm{~V}, \mathrm{E}_{\mathrm{Cd}^{2+} / \mathrm{Cd}}^{0}=-0.40 \mathrm{~V} \quad[\log 10=1]$
(ii) State Faraday's second law of electrolysis. How will the pH of aqueous NaCl solution be affected when it is electrolysed ? $3+2=5$

OR

(b) (i) Calculate the $\Delta_{r} G^{0}$ and $\log \mathrm{K}_{\mathrm{c}}$ for the following cell reaction :

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{~s})
$$

Given : $\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=+0.80 \mathrm{~V}$, $1 \mathrm{~F}=96500 \mathrm{C} \mathrm{mol}^{-1}$
(ii) Write any two advantages of the fuel cells over primary and secondary batteries?
(iii) How many Faradays are required for the oxidation of 1 mole of $\mathrm{H}_{2} \mathrm{O}$ to O_{2} ?

For more details, Call or Visit

Core Academy, $1^{\text {st }} \& 2^{\text {nd }}$ Floor above Dr. Rakshit Dental Clinic, Mission Hospital Road, Bilaspur

Sol. 31
(a) (i)

$$
\text { (i) } \begin{aligned}
& E_{\text {cell }}^{0}=E_{\text {cathode }}^{0}-E_{\text {anode }}^{0} \\
&=-0.40-(-0.76) \\
&=-0.40+0.76 \\
&=0.36 \mathrm{~V} \\
& E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{0.059}{n} \log \frac{[P]}{[R]} \\
&= 0.36-\frac{0.059}{2} \log 10 \frac{\left[10^{-3}\right]}{\left[10^{-1}\right]} \\
&=+0.419
\end{aligned}
$$

(ii) Theory based.
$12^{\text {th }}$ CBS CHEM SET - 1 CODE 56/3/1
OR
(b)
(i)

$$
\mathrm{Fe}_{(\mathrm{s})} \longrightarrow \mathrm{Fe}_{(\mathrm{aq})}^{+2}+2 e^{-}
$$

$$
\begin{aligned}
& \because \quad \begin{aligned}
\Delta_{2} \dot{ } G^{0} & =- \text { MF } \\
= & -2 \times 96500 \times 1.24 \\
& =239320 \mathrm{~J}
\end{aligned} \quad\left\{\begin{aligned}
E_{\text {cell }}^{0} & =E_{\text {cathode }}^{\circ} \\
& =0.80-(-0.4)
\end{aligned}\right. \\
& =239320 \mathrm{~J} / \mathrm{mol} \\
& =+2.24 \mathrm{~V} \text {. } \\
& =239.32 \mathrm{~kJ} / \mathrm{mol} \text {. } \\
& \text { and } \triangle G^{\circ}=-2.303 \mathrm{mRT} \log 10 \mathrm{~K}=239320 . \\
& \therefore \quad K=10^{-20.97}=9 \times 10^{2} \rho 2 \times 10^{-21} \\
& \text { (i) } E_{\text {cell }}=E^{0}-\frac{0.0591}{2} \operatorname{loy} \cdot \frac{\left(z_{n}^{2+}\right]}{\left[\left(d^{2+}\right]\right.}
\end{aligned}
$$

(ii) do it.
(b) (i) $\Delta G^{\circ}=-2.303 R T \log K_{\text {eq }}$.
(ii) It produce pure water and not discharge
(iii)

$$
\begin{array}{r}
2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 e^{-} \\
2 \mathrm{~mol} \mathrm{e} \\
1 \mathrm{~mol} r
\end{array}
$$

$12^{\text {th }}$ CBSE CHEM SET -1 CODE 56/3/1

(i) Write the major product(s) in the following reactions:
(1)

COOH
(3)

(ii) Give simple chemical tests to distinguish between the following pairs of compounds :
(1)
 and

(2) Pentanal and Pentan-3-one

OR

(b) (i) Give reasons for the following :
(1) In semicarbazide, only one $-\mathrm{NH}_{2}$ group is involved in the formation of semicarbazone.
(2) Acetaldehyde is more reactive than acetone towards addition of HCN .
(ii) (1) Arrange the following in decreasing order of their acidic strength :
$\mathrm{CH}_{3} \mathrm{COOH}, \quad \mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}, \mathrm{HCOOH}$
(2) Name the reagent in the following reaction :

$$
\begin{array}{r}
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CN} \xrightarrow{?} \\
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CHO}
\end{array}
$$

(iii) Write the reaction involved in Hell-Volhard-Zelinsky reaction.

For more details, Call or Visit

Core Academy, $1^{\text {st }} \& 2^{\text {nd }}$ Floor above Dr. Rakshit Dental Clinic, Mission Hospital Road, Bilaspur
$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1
(a) (i)

(oxidation of alkyl benserae)
(2)

 and meta directing group,
(ii)
(1) Halo form Test
(2) Tollen's reagent

$12^{\text {th }}$ CBS CHEM SET -1 CODE 56/3/1

$$
O R .
$$

(b) (i)

$$
\begin{aligned}
& \mathrm{NH}_{2} \text { group is } \\
& \text { delucalised and involved } \\
& \text { in resonance. }
\end{aligned}
$$

$$
\text { (2) Due to }+I \text { effect of }-\mathrm{CH}_{3} \text { group. }
$$

(2) $5 \mathrm{mCl} / \mathrm{HCl}$ (stephen's reduction).
(iii) Do it yourself.

$12^{\text {th }}$ CBSE CHEM SET -1 CODE 56/3/1

33. Attempt any five of the following:
(a), Write the IUPAC name of the complex :
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{CN})(\mathrm{en})_{2}\right]^{2+}$
(b) Why is geometrical isomerism not possible in tetrahedral complexes having two different types of unidentate ligands coordinated with the central metal ion?
(c). Arrange the following complex ions in increasing order of their crystal field splitting energy (Δ_{0}) :

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{CoF}_{6}\right]^{3-},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}
$$

(d) . Write the hybridization and magnetic character of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ on the basis of valence bond theory.
[Atomic No. : $\mathrm{Ni}=28$]
(e). Out of $\left[\mathrm{CoF}_{6}\right]^{3-}$ and $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$, which one complex is :
(i) more stable?
(ii) the high spin complex ?
(f) What is the difference between an ambidentate ligand and bidentate ligand?
(g) . Write the electronic configuration of d^{5} in terms of $t_{2 g}$ and e_{g} in an octahedral field when :
(i) $\Delta_{0}>P$ and (ii) $\Delta_{0}<P$
(a) Aqua cyanide Brs-(ethylene diammine) iotuit it)
(b) Not planar.
(c) $\left[\mathrm{CO}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}_{0}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{COF}_{6}\right]^{3-}$
(d) $s p^{3}, \mu=\sqrt{n(n+2)}, \quad n=0$
$=0$
(e) (i) $\left[\mathrm{CO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ strong ligand
(ii) $\left(\mathrm{C}_{0} \mathrm{~F}_{6}\right)^{3} \mathrm{~F}^{-}$weak ligand
(f) doit.
(g) do it.

$12^{\text {th }}$ CBSE CHEM SET -2 CODE $56 / 3 / 2$

Attention! Class $12^{\text {th }}$ Appearing/Passed Students

Top Leading Institute in BILASPUR Zone since 2012 Announces.... COURSES FOR YOUR NEED

FOR NEET / CUET 2024
In 42 days, get assured preparation for marks $\mathbf{5 5 0}^{+}$. We have week wise plan with test series accordingly.
$\underline{22^{\text {nd }} \text { MARCH } 2024}$

- हिन्दी माध्यम के लिए पृथक बैचेज

FOR NEET / JEE 2024
NEET: 25 MOCK TESTS, OFFLINE (English and Hindi Medium) JEE MAIN: 40 MOCK TESTS, ONLINE (Only English medium)
MARCH, APRIL 2024

- At ₹ 1500 only, 4 tests are FREE for all

NCERT line by line questions ($50-100$ Qs from each chapter) for NEET.

Test Series for JEE MAIN / ADV / NEET 2024 With discussion (4 Free mock tests for all).

CBSE $12^{\text {th }}$ Board 2024 Q. papers solution on same day (provided on WhatsApp or our you tube channel.

Our Best Faculty for Your Crash Course

Be the part of Bilaspur zone's No. 1 Institute since 2013

$12^{\text {th }}$ CBSE CHEM SET -2 CODE 56/3/2

For more details, Call or Visit

Core Academy, $1^{\text {st }} \& 2^{\text {nd }}$ Floor above Dr. Rakshit Dental Clinic, Mission Hospital Road, Bilaspur

