Use link given in description to download this PDF

SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3

1. The distance between the points $P\left(-\frac{11}{2}, 5\right)$ and $Q\left(-\frac{2}{8}, 5\right)$ in:
(a) Gunits
(b) S unite
(c) 2 units
(d) 8 units

In the given figure, $A B=B C=10 \mathrm{~cm}$. If $A C=7 \mathrm{~cm}$, then the length cot f is:

(a) 8.5 cm
Le) 6.5 cm

$$
\text { sot } 120
$$

(b) 7 cm
(d) 5 cm
3. Water in a river which is 3 m deep and 40 m wide is flowing at the rate of $2 \mathrm{~km} / \mathrm{h}$. How much water will fall into the sea in 2 minutes? walk collected? in 1 Hr $\begin{array}{ll}\text { (a) } 800 \mathrm{~m}^{3} & \text { (b) } 4000 \mathrm{~m}^{3}=3 \times 40 \times 20^{-2} 0\end{array}$
(c) $8000 \mathrm{~m}^{3}$
(C)
(d) $2000 \mathrm{~m}^{3}$
so in 2minulie $=\frac{\frac{3 \times 60 \times 2000}{10-3 \theta}}{30}$
$=8000 \mathrm{~m}^{3}$

4. If the mean and the mode of a distribution are 15 and 18 respectively, then the median of the distribution is :

$$
\begin{array}{ll}
\text { (a) } & 17 \\
\text { (c) } & 16
\end{array}
$$

(C)
(b) 15
(d) 18
$3($ med $)-2($ mean $)=$ mode

5. The $11^{\text {th }}$ term from the end of the A.P.: $10,7,4, \ldots,-62$ is :
(a) 25
(c) -32
(b) 16
(d) 0

$$
\begin{aligned}
T_{11}(\text { end }) & =-62+10(3) \\
& =-62+30 \\
& =-32
\end{aligned}
$$

6. One card is drawn at random from a well shuffled pack of 52 playing cards. The probability that the drawn card is a queen, is :
(a) $\frac{4}{13}$
(b) $\frac{4}{52}$
(c) $\frac{2}{13}$
(d) $\frac{1}{26}$
(B)
7. $P Q$ is tangent to a circle centered at O. If the radius of the circle is 5 cm , then the length of the tangent $P Q$ is :

8. Which of the following numbers cannot be the probability of happening
of an event?
(a) 0
(B) (b) $\frac{7}{0.01}$
because $\frac{7}{101}$ is
(c) 0.07
(d) $\frac{0.07}{3}$

9. If $\sec \theta-\tan \theta=\frac{1}{3}$, then the value of $(\sec \theta+\tan \theta)$ is :
(a) $\frac{4}{3}$
(c) $\frac{1}{3}$
(b) $\frac{2}{3}$
(d) 3
10. A quadratic equation whose roots are $(3-\sqrt{2})$ and $(3+\sqrt{2})$ is :
(a) $x^{2}-6 x+7=0$
(b) $x^{2}+6 x+7=0$
$x^{2}-($ sum $) x+P=0$
(c) $9 \mathrm{x}^{2}-2=0$
(A)
(d) $x^{2}-7=0$
(c) $9 x^{2}-2=0$
(d) $x-7=0$

$$
x^{2}-6 x+7=0
$$

$\sec \theta+\tan \theta=\frac{1}{\sec \theta-\tan \theta}$
$=\frac{1}{1 / 3}$
$=3$

Use link given in description to download this PDF

SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3

11. If every term of the statistical data consisting of n terms is decreased by 2 , then the mean of the data :
(a) decreases by 2
(b) remains unchanged
(c) decreases by 2 n
(d) decreases by 1
12. The number of polynomials having zeroes -3 and 5 is :
(a) only one
(b) infinite
(c) exactly two
(d) at most two
13. The solution of the pair of equations $x+y=a+b$ and $a x-b y=a^{2}-b^{2}$
is:
(a) $\mathrm{x}=\mathrm{b}, \mathrm{y}=\mathrm{a}$
(b) $\mathrm{x}=-\mathrm{a}, \mathrm{y}=\mathrm{b}$
(c) $\mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{b}$
(d) $\mathrm{x}=\mathrm{a}, \mathrm{y}=-\mathrm{b}$
(Trial method)
$x=a, y=b$
is satisfying
14. The common difference of the A.P. whose $n^{\text {th }}$ term is given by $a_{n}=3 n+7$, is :
$\begin{array}{ll}\text { (a) } & 7 \\ \text { (c) } & 3 n\end{array}$
(b) 3
(B)
$C \cdot D \cdot=3$
15. In the given figure, $D E \| B C$. The value of x is :

(a) 6
(b) $12 \cdot 5$
(c) 8
(d) 10
16. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{FD}}$. Which of the following makes the two triangles similar?
(a) $\angle \mathrm{A}=\angle \mathrm{D}$
(c) $\angle \mathrm{B}=\angle \mathrm{E}$
(B) (b) $\angle \mathrm{B}=\angle \mathrm{D}$
(d) $\angle \mathrm{A}=\angle \mathrm{F}$

Use link given in description to download this PDF

 SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/317. $\left(\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}\right)$ is equal to :
(a) $\sin 60^{\circ}$
(c) $\tan 60^{\circ}$
(b) $\cos 60^{\circ}$
(d) $\sin 30^{\circ}$

$$
\left.\begin{array}{l}
\frac{2 \tan 30}{1+\tan ^{2} 30^{\circ}} \\
=\frac{2 / \sqrt{3}}{1+\frac{1}{3}}=\frac{\sqrt{3}}{2} \tag{A}\\
=\sin 60^{\circ}
\end{array}\right]
$$

18. In the given figure, $A B$ is a tangent to the circle centered at O. If $\mathrm{OA}=6 \mathrm{~cm}$ and $\angle \mathrm{OAB}=30^{\circ}$, then the radius of the circle is :

$O B=\gamma$ (rad)
(a) 3 cm

$$
\begin{aligned}
\sin 30=\frac{r}{6} & \Rightarrow \frac{1}{2}=\frac{r}{6} \\
& \Rightarrow r=3
\end{aligned}
$$

(b) $3 \sqrt{3} \mathrm{~cm}$
(d) $\sqrt{3} \mathrm{~cm}$

Page 9
P.T.O.

30/5/3
(c) 2 cm
19. Assertion (A) : The number 5^{n} cannot end with the digit 0 , where n is a natural number. True
Reason (R): Prime factorisation of 5 has only two factors, 1 and 5 . True
20. Assertion (A): If the points $\mathrm{A}(4,3)$ and $\mathrm{B}(\mathrm{x}, 5)$ lie on a circle with centre $O(2,3)$, then the value of x is 2 . True

Reason (R) : Centre of a circle is the mid-point of each chord of the circle.

False

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBSE MATHS 2023 STANDARD SET 3 CODE 30/5/3
21. Find the greatest 3 -digit number which is divisible by 18,24 and 36

$$
\text { LCM }=72 \text {, Greatest } 3 \text { digit }=936
$$

Q. 21
$L C M=72$
Greatest 3 digit no $=999$
We want greatest 3 digit divisible by 72
So divide 999 by 72, rem $=63$
So req; no $=999-63=936$ Ans.
22. (a) If $a \cos \theta+b \sin \theta=m$ and $a \sin \theta-b \cos \theta=n$, then prove that

$$
\begin{aligned}
& a^{2}+b^{2}=m^{2}+n^{2} . \\
& \text { OR } \\
& \text { PRove that: } \quad
\end{aligned} \quad \begin{aligned}
& a \cos \theta+b \sin \theta=m \\
& a \sin \theta-b \cos \theta=n \\
& (1)^{2}+(2)^{2} \Rightarrow a^{2}+b^{2}=m^{2}+n^{2}
\end{aligned}
$$

(b) Prove that:

$$
\sqrt{\frac{\sec \mathrm{A}-1}{\sec \mathrm{~A}+1}}+\sqrt{\frac{\sec \mathrm{A}+1}{\sec \mathrm{~A}-1}}=2 \operatorname{cosec} \mathrm{~A}
$$

Q.22 a

$$
\begin{align*}
& a \cos \theta+b \sin \theta=m \tag{1}\\
& a \sin \theta-b \cos \theta=n \tag{2}
\end{align*}
$$

$$
\begin{align*}
(1)^{2}+(2)^{2} & \Rightarrow(a \cos \theta+b \sin \theta)^{2}+(a \sin \theta-b \cos \theta)^{2}=m^{2}+n^{2} \\
& \Rightarrow a^{2} \cos ^{2} \theta+2 a b \sin \theta \cos \theta+b^{2} \sin ^{2} \theta+a^{2} \sin ^{2} \theta-2 a b \sin \theta \cos \theta+b^{2} \cos ^{2} \theta \\
& \Rightarrow \quad m^{2}+n^{2}=m^{2}+n^{2} \tag{OR}
\end{align*}
$$

Q.22 (b)

$$
\begin{aligned}
\text { LHS } & =\sqrt{\frac{\sec A-1}{\sec A+1}+\sqrt{\frac{\sec A+1}{\sec A-1}}} \\
& =\frac{\sec A-1}{\tan A}+\frac{\sec A+1}{\tan A} \quad \begin{array}{l}
\quad \begin{array}{c}
\text { multiply mum } 2 \text { den } \\
\text { of both by } \sec A-1
\end{array} \\
\sec A+1, \operatorname{resp} p
\end{array} \\
& =\frac{2 \sec A}{\tan A} . \\
& =\frac{2 \sin A}{\sin }=2 \operatorname{cosec} A=\text { RHS }
\end{aligned}
$$

(Hence Proved)

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3
23. Find the ratio in which y-axis divides the line segment joining the points $(5,-6)$ and $(-1,-4)$. (5:1) fins.
Q. 23

any point on y axis is $(0, y)$
Let $(0, y)$ divides the line sag into ratio $k: 1$

$$
\begin{aligned}
\Rightarrow \quad & 0=\frac{-k+5}{k+1} \Rightarrow \quad k=5 \\
& \text { Ratio }=5: 1 \quad \text { Ans. 5:1 }
\end{aligned}
$$

24. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
Q. 24

Given: A circle with centre O : $A-B$ is diameter.
$A X \& A Y$ are tangents at A \& B.
To Prove: $A \times \| B Y$
Proof: $A \times \perp A B$ (Theorem 10.1)

$$
\begin{aligned}
& B Y \perp B A \quad(-1) \\
\Rightarrow \quad & \angle A+\angle B=90^{\circ}
\end{aligned}
$$

$\Rightarrow A \times \| B y$ (sum of coint angles is 180°)

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3
25. (a) The line segment joining the points $\mathrm{A}(4,-5)$ and $\mathrm{B}(4,5)$ is divided by the point P such that $A P: A B=2: 5$. Find the coordinates of P.

OR

$$
(4,-1)
$$

(b) Point $\mathrm{P}(x, y)$ is equidistant from points $\mathrm{A}(5,1)$ and $\mathrm{B}(1,5)$. Prove that $\mathrm{x}=\mathrm{y}$.
Q. 25

$$
\frac{A P}{A B}=\frac{2}{5} \Rightarrow \frac{A P}{P B}=\frac{2}{3}
$$

$$
\Rightarrow \quad P=\left(\frac{12+8}{5}, \frac{-15+10}{5}\right) \quad \text { (section formula) }
$$

$$
=(4,-1) \text { Ans. }
$$

Q.25(OR)

$$
\begin{aligned}
& (x, y)^{2} P A(5,1) \\
& P A^{2}=P B^{2} \\
& (x-5)^{2}+(y-1)^{2}=(x-1)^{2}+(y-5)^{2} \\
& \Rightarrow x^{2}+y^{2}-10 x-2 y+26=x^{2}+y^{2}-2 x-10 y+26 \\
& \Rightarrow \quad-8 x=-8 y \Rightarrow x=y \quad \text { Hence Proved }
\end{aligned}
$$

$$
\Rightarrow \quad(x-5)^{2}+(y-1)^{2}=(x-1)^{2}+(y-5)^{2}
$$

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBSE MATHS 2023 STANDARD SET 3 CODE 30/5/3
26. (a) In the given figure, CD is the perpendicular bisector of $\mathrm{AB} . \mathrm{EF}$ is perpendicular to $C D$. $A E$ intersects $C D$ at G. Prove that $\frac{C F}{C D}=\frac{F G}{D G}$.

OR
(b) In the given figure, ABCD is a parallelogram. BE bisects CD at M and intersects AC at L . Prove that $\mathrm{EL}=2 \mathrm{BL}$.

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3

26

$A D=B D$ (given)
To prove: $\frac{C F}{C D}=\frac{F G}{D G}$

SOn (1) $\triangle C F E \sim \triangle C D B \quad(A A)$

$$
\begin{align*}
& \Rightarrow \quad \frac{C F}{C D}=\frac{F E}{D B} \quad(C P S T) \\
& \Rightarrow \quad \frac{C F}{C D}=\frac{F E}{D A} \quad(A D=B D) \\
& \Rightarrow \quad \triangle \quad \overline{F E C} \sim \triangle D A G \quad(A A) \\
& \Rightarrow \quad \frac{F E}{D A}=\frac{F G}{D G} \quad \tag{2}
\end{align*}
$$

from (1) \& (2) $\frac{C F}{C D}=\frac{F G}{D G_{1}}$ Hence Proved

Given
i) $A B C D$ is a 11 gm
ii) $\triangle M=M C$.

Sol (1) $\triangle D M E \approx \cong \triangle C B$ (ASA)

$$
\Rightarrow \quad E M=M B, D E=B C(C P C T)
$$

(11) $\triangle A E L \backsim \triangle C B L \quad(A A, x=x, y=y)$

$$
\begin{aligned}
& \Rightarrow \frac{A E}{B C}=\frac{E L}{B L} \quad \Rightarrow \quad \frac{E L}{B L}=\frac{A D+D E}{B C} \\
& \Rightarrow \frac{E L}{B L}=\frac{2 D E}{D E} \quad(B C=D E=A D) \\
&=\sqrt{D L}=2 B L \quad \text { Hence Proved) }
\end{aligned}
$$

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3
27. A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator. It becomes $\frac{1}{4}$ when 8 is added to the denominator. Find the fraction. $\frac{5}{12}$ Ans
Q.27 Let fraction be $\frac{x}{y}$
case -1 $\quad \frac{x-1}{y}=\frac{1}{3}$

$$
\begin{align*}
& \Rightarrow \quad 3 x-3=y \\
& \Rightarrow \quad 3 x-y=3 \tag{1}
\end{align*}
$$

Case-2

$$
\begin{align*}
& \frac{x}{y+8}=\frac{1}{4} \\
\Rightarrow & 4 x=y+8 \\
& 4 x-y=8 \tag{2}
\end{align*}
$$

Solving (1) \& (2)

$$
\begin{aligned}
& 3 x-y=3 \\
& 4 x-y=8 \\
& =x=-5 \quad x=5 \quad y=12
\end{aligned}
$$

Faction is $\frac{5}{12}$ Ans.
28. Prove that:

$$
\frac{\tan A}{1+\sec A}-\frac{\tan A}{1-\sec A}=2 \operatorname{cosec} A
$$

Q. 28

$$
\begin{aligned}
\text { LAS }= & \frac{\tan A}{1+\sec A}-\frac{\tan A}{1-\sec A} \\
& =\frac{\tan A}{\sec A+1}+\frac{\tan A}{\sec A-1} \\
& =\tan A\left(\frac{1}{\operatorname{tac} A+1}+\frac{1}{\sec A-1}\right) \\
& =\tan A\left(\frac{2 \operatorname{cec} A}{\sec ^{2} A-1}\right)=\tan A\left(\frac{2 \sec A}{\tan ^{2} A}\right) \\
& =\frac{2 \cos A}{\cos A \cdot \sin A}=2 \operatorname{cosec} A \\
& \text { Hence, Proved }
\end{aligned}
$$

Use link given in description to download this PDF

SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3

29. Find the mean of the following frequency distribution :

Classes	$25-30$	$30-35$	$35-40$	$40-45$	$45-50$	$50-55$	$55-60$
Frequency	14	22	16	6	5	3	4

$$
\begin{gathered}
\text { assumed mean }(a)=42.5 \\
h=5 \\
\text { mean }(\bar{x})=\bar{u} \times h+a \\
\text { or } \\
a+\frac{\sum f_{i} u_{i}}{\sum f_{i}} \times h \\
=42.5+\frac{(-75)}{70} \times 5 \\
=42.5-\frac{79}{14} \\
=42.5-5.64=36.86
\end{gathered}
$$

30. (a) Prove that $\sqrt{3}$ is an irrational number.

OR

(b) The traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds respectively. If they change simultaneously at 7 a.m., at what time will they change together next?

07:07:12 AM SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3
30. (a) Refer NCERT (it's simple Q, repeated Q)

OR
b) we need to find LCM in this Q.

$$
\begin{aligned}
& \text { LCM(4B, 72, } 108)=? \\
& U B=2^{4} \times 3 \\
& 72=2^{3} \times 3^{2} \\
& 108=2^{2} \times 3^{3} \\
& \text { LCM }=2^{4} \times 3^{3}=16 \times 27 \\
& =432 \\
& 432 \text { seconds }=\frac{432}{60}=7+\frac{12}{60} \\
& =7 \mathrm{~min} 12 \mathrm{sec} .
\end{aligned}
$$

So the time when they change simultaneowrlys of tee 7 AM is

$$
=07: 07: 12 \quad A M
$$

31. Find the common difference of an A.P. whose first term is 8 , the last term is 65 and the sum of all its terms is 730 .

31

$$
\begin{aligned}
& \text { AP, } \quad d=? \quad a=8 \quad \text { (first term) } \\
& \quad l=65 \text { (last term) } \\
& S_{n}=730 \\
& S_{n}=\frac{n}{2}(a+l) \\
& 7-30=\frac{n}{2}(8+65) \\
& \Rightarrow 730=\frac{n}{2}(73) \\
& \Rightarrow n=20 \\
& \Rightarrow \quad T_{20}=65 \\
& a+19 d=65 \\
& \Rightarrow \quad 8+19 d=65 \\
& \Rightarrow \quad 19 d=57
\end{aligned}
$$

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3
32. (a) A train travels at a certain average speed for a distance of 54 km and then travels a distance of 63 km at an average speed of $6 \mathrm{~km} / \mathrm{h}$ more than the first speed. If it takes 3 hours to complete the journey, what was its first average speed?

OR
(b) Two pipes together can fill a tank in $\frac{15}{8}$ hours. The pipe with larger diameter takes 2 hours less than the pipe with smaller diameter to fill the tank separately. Find the time in which each pipe can fill the tank separately. 3 hrs, 5 hers.
(32) Let first average speed $=x \mathrm{~km} / \mathrm{hr}$
(a)

$$
\text { time in first } \underset{(\text { Part })}{ }=\frac{54}{x} \text { hrs. }
$$

2 nd Res: distance $=63$, speed $=x+6$

$$
\begin{aligned}
& \text { time }=\frac{63}{x+6} \\
& \text { total time }=3 \\
& \Rightarrow \quad \frac{54}{x}+\frac{63}{x+6}=3 \\
& \Rightarrow \frac{18}{x}+\frac{21}{x+6}=1 \Rightarrow 18 x+108+21 x=x(x+6) \\
& \Rightarrow x^{2}+6 x-39 x-108=0 \\
& \Rightarrow \quad x^{2}-33 x-108=0 \\
& (x-36)(x+3)=0 \\
& \Rightarrow x=36 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

First average speed $=36 \mathrm{~km} / \mathrm{hr}$

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3

OR \qquad

32 (b). Let time taken by pipe (larger dia) to fill tank $=x$ hrs

$$
\xrightarrow{\text { Let time taken by pipe (larger }}=x+2
$$

In 1 hr , pipe(smaller dia), fills the $\tan k=\frac{1}{x+2} \operatorname{tank}$

$$
\longrightarrow \text {, Pipe (larger dia), }=\frac{1}{x} \text { tank }
$$

They are on for $\frac{15}{8}$ hiss.

$$
\begin{aligned}
& \frac{15}{8}\left(\frac{1}{x+2}+\frac{1}{x}\right)=1 \\
& \Rightarrow \frac{1}{x}+\frac{1}{x+2}=\frac{8}{15} \\
& \Rightarrow \quad \frac{x+2+x}{x(x+2)}=\frac{8}{15} \Rightarrow 30 x+30=8 x^{2}+16 x \\
& \Rightarrow \quad 8 x^{2}-14 x-30=0 \Rightarrow 4 x^{2}-7 x-15=0 \\
& 4 x^{2}-12 x+5 x-15=0 \\
& \text { taken by smaller pipe }=5 \text { hiss }
\end{aligned} \Rightarrow 4 x(x-3)+5(x-3)=0
$$

$$
r_{1 .,} \because \text { ne taken by smaller pipe }=5 \text { hiss }
$$

33. A horse is tied to a peg at one corner of a square shaped grass field of side 15 m by means of a 5 m long rope. Find the area of that part of the field in which the horse can graze. Also, find the increase in grazing area if length of rope is increased to 10 m . (Use $\pi=3 \cdot 14$)

$$
19.6 \mathrm{~m}^{2}, 58.87 \mathrm{~m}^{2}
$$

Q. 33

(i) Area which can be grazed by horse with 5 m rope

$$
\begin{aligned}
=\frac{1}{4} \times \pi(5)^{2} & =\frac{25 \pi}{4} \mathrm{~m}^{2} \\
=\frac{25}{4} \times 3.14 & =\frac{314}{16} \mathrm{~m}^{2} \\
& =19.6 \mathrm{~m}^{2}
\end{aligned}
$$

(II) Increase in area when rape is changed from 5 m to 10 m leupth

$$
\begin{aligned}
& =\frac{1}{4} \pi(10)^{2}-\frac{1}{4} \pi(5)^{2} \\
& =\frac{\pi}{4}(100-25)=\frac{75 \pi}{4} \mathrm{~m}^{2} \\
& =\frac{75}{4} \times 3.14=58.87 \mathrm{~m}^{2}
\end{aligned}
$$

34. (a) A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC are of lengths 10 cm and 8 cm respectively. Find the lengths of the sides $A B$ and $A C$, if it is given that area $\triangle \mathrm{ABC}=90 \mathrm{~cm}^{2}$.

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3
(b) Two circles with centres O and O^{\prime} of radii 6 cm and 8 cm , respectively intersect at two points P and Q such that OP and $\mathrm{O}^{\prime} \mathrm{P}$ are tangents to the two circles. Find the length of the common chord PQ.

Q.34 (a)

Construction: Join $O P, O, Q$ (P, Q are point of contact) Join $O A, O B, O C$

$$
\operatorname{Ar}(\triangle A B C)=\operatorname{Ar}(A O B)+\operatorname{Ar}(B O C)+\operatorname{Ar}(A O C)
$$

$$
90=\frac{1}{2} \times 4 \times(x+10)+\frac{1}{2} \times 4^{2} \times(18)+\frac{1}{2}(4)^{2}(x+8)
$$

$$
\Rightarrow \quad 90=2[x+10+18+x+8]
$$

$$
\Rightarrow \quad 45=2 x+36 \quad \Rightarrow \quad 2 x=45-36 \Rightarrow x=4.5
$$

$$
\Rightarrow \text { xecelex xix }
$$

So

$$
\begin{aligned}
& A B=10+x=14.5 \\
& A C=B+x=12.5
\end{aligned}
$$

Use link given in description to download this PDF SOLUTIONS : 10 th CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3
Q.3h(b) OR

$$
P Q=? \quad O^{\prime} P \text { is tangent } \Rightarrow \quad O P \perp O^{\prime} P
$$

Now the figure belongs to right s

only 1 bisector of $P Q$ can pass through $O \& O^{\prime}$

$$
\begin{equation*}
\Rightarrow \quad P A \perp 00^{\prime} \tag{So}
\end{equation*}
$$

only 1 bisector of $P Q$ can pass through $O \& O^{\prime}$

$$
\begin{equation*}
\Rightarrow \quad P A \perp 00^{\prime} \tag{so}
\end{equation*}
$$

$$
O O^{\prime}=10\left(P G T \text { in } \triangle O P O^{\prime}\right) \Rightarrow O A=x, D^{\prime} A=10-x
$$

So $\quad P_{A}=A-Q$
Now $\triangle P A O^{\prime} \sim \triangle O P O^{\prime}$ (AA criteria)

$$
\begin{aligned}
& \Rightarrow \frac{P A}{O P}=\frac{P O^{\prime}}{O O^{\prime}} \Rightarrow \frac{P A}{6}=\frac{8}{10} \Rightarrow P A=\frac{4 B}{10}=4.8 \\
& \Rightarrow P P=2 \times 4.8=9.6 \mathrm{~cm}
\end{aligned}
$$

Tip: you could use trigonometry have instead of Similarity.

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3
35. Two pillars are standing on either side of a 80 m wide road. Height of one pillar is 20 m more than the height of the other pillar. From a point on the road between the pillars, the angle of elevation of the higher pillar is 60°, whereas that of the other pillar is 30°. Find the position of the point between the pillars and the height of each pillar. (Use $\sqrt{3}=1 \cdot 73$)
(35)

$$
\Rightarrow \quad A E=\sqrt{3} H \quad, E C=\frac{H+20}{\sqrt{3}}
$$

$$
\sqrt{3} H+\frac{H+20}{\sqrt{3}}=80
$$

$$
\begin{aligned}
\Rightarrow 3 H+H+20=80 \sqrt{3} & \Rightarrow U H=80 \sqrt{3}-20 \\
& \Rightarrow \frac{H=20 \sqrt{3}-5}{=20 \times 1.73-5}
\end{aligned}
$$

Height of pillars:

$$
\begin{aligned}
\text { smaller } & =20 \sqrt{3}-5=34.6-5=29.6 \mathrm{~m} \\
& =29.6 \mathrm{~m} \text { Ans. } \\
\text { Hedigher } & =49.6 \mathrm{~m} \text { Ans. }
\end{aligned}
$$

position of point $=\sqrt{3} \mathrm{H} m$ far from smaller pill

$$
\begin{aligned}
& =\sqrt{3}(20 \sqrt{3}-5) \\
& =60-5 \sqrt{3} \\
& =60-5 \times 1.73 \\
& =60-8.65=51.35 \mathrm{~m}
\end{aligned}
$$

SECTION E

Case Study - 1

36. In a pool at an aquarium, a dolphin jumps out of the water travelling at 20 cm per second. Its height above water level after t seconds is given by $h=20 t-16 t^{2}$.

Based on the above, answer the following questions :
(i) Find zeroes of polynomial $p(t)=20 t-16 t^{2}$. $0, \frac{4}{5} \quad 1$
(ii) Which of the following types of graph represents $p(t)$?
(a)

(c)

(d)

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3 Ere
(iii) (a) What would be the value of h at $\mathrm{t}=\frac{3}{2}$? Interpret the result. 2

OR -6 cm , Gambelow water level.
(iii) (b) How much distance has the dolphin covered before hitting the water level again?
cane
(36) $h=20 t-16 t^{2}, t=t i m e ~ i n ~ s e c ~$
(36) $h=20 t-16 t, h=$ height above water level
(i) zeroes of polynomial

$$
\begin{array}{r}
20 t-16 t^{2}=0{ }^{T} \Rightarrow t=0 \text { or } \frac{20}{16} \\
\\
0, \frac{5}{4} \text { Ans. }
\end{array}
$$

(II) (A), because, $y=0$ at $t=0 \& \frac{5}{4}$ from above and height (y) first increases then. decreases.
(III) at $t=\frac{3}{2}$ see, $h=20 \times \frac{3}{2}-16 \times \frac{9}{4}=30-36=-6 \mathrm{~cm}$
\Rightarrow Dolphin is 6 cm below the weterloud

36 (iii) b:

$$
\begin{aligned}
& \text { Speed of dolphin }=20 \mathrm{~cm} / \mathrm{fec} \\
& \text { time of flight (are water level) }=\frac{5}{4} \text { secs. } \\
& \text { so distance }=20 \times \frac{5}{4}=25 \mathrm{~cm}
\end{aligned}
$$

Use link given in description to download this PDF

 SOLUTIONS : $10^{\text {th }}$ CBSE MATHS 2023 STANDARD SET 3 CODE 30/5/3
Case Study - 2

37. A golf ball is spherical with about $300-500$ dimples that help increase its velocity while in play. Golf balls are traditionally white but available in colours also. In the given figure, a golf ball has diameter 4.2 cm and the surface has 315 dimples (hemi-spherical) of radius 2 mm .

Based on the above, answer the following questions :
(i) Find the surface area of one such dimple. $0.08 \pi \mathrm{~cm}^{2} \quad 1$
(ii) Find the volume of the material dug out to make one dimple. $\frac{0.016}{3} \mathrm{Can}$
(iii) (a) Find the total surface area exposed to the surroundings. 2 OR

$$
30.24 \pi \mathrm{~cm}^{2}
$$

(iii) (b) Find the volume of the golf ball. $11.256 \pi \mathrm{~cm}^{3}$

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3

Case-Study-2
37

large sphene

$$
R=2.1 \mathrm{~cm}
$$

hemisphere (dimple)

$$
\begin{aligned}
\gamma & =2 \mathrm{~mm} \\
& =0.2 \mathrm{~cm}
\end{aligned}
$$

no of dimples $=315$
(i)

$$
\begin{aligned}
\text { S.A of one such dimple } & =2 \pi r^{2} \\
& =2 \times \pi \times(0.2)^{2} \\
& =2 \pi \times 0.04 \\
& =0.08 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

(II) material dug out to make one dimple $=$ vol of one hemisphere

$$
\begin{aligned}
& =\frac{2}{3} \pi \gamma^{3} \\
& =\frac{2}{3} \pi(0.2)^{3} \\
& =\frac{2}{3} \pi \times 0.008=\frac{0.016 \pi}{3} \mathrm{~cm}^{3}
\end{aligned}
$$

(III) a Total surface area exposed to surrounding

$$
\begin{aligned}
& =\overline{T S A} \text { of Sphene }-315 \pi r^{2}+315\left(2 \pi r^{2}\right) \\
& =4 \pi R^{2}+315 \pi r^{2} \\
& =\pi\left[4(2.1)^{2}+315 \times(0.2)^{2}\right] \\
& =\pi[17.64+12.6] \\
& =30.24 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

(III) b
(III) b

$$
1
$$

$$
\begin{aligned}
\text { Vol of golf ball } & =\frac{4}{3} \cdot \pi \cdot R^{3}-3+5 \times \frac{2}{3} \pi r^{3} \\
& =\pi\left[\frac{4}{3}(2.1)^{3}-210(0.2)^{3}\right] \\
& =\pi[12.936-1.68]=11.256 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Use link given in description to download this PDF

 SOLUTIONS : $10^{\text {th }}$ CBSE MATHS 2023 STANDARD SET 3 CODE 30/5/3
Case Study - 3

38. A middle school decided to run the following spinner game as a fund-raiser on Christmas Carnival.

Making Purple: Spin each spinner once. Blue and red make purple. So, if one spinner shows $\operatorname{Red}(\mathrm{R})$ and another Blue (B), then you 'win'. One such outcome is written as 'RB'.

Based on the above, answer the following questions :
(i) List all possible outcomes of the game.

$$
\begin{aligned}
& R R, R B, R G, G R, G B, G G, \\
& Y R, Y B, Y G
\end{aligned}
$$

(ii) Find the probability of 'Making Purple'. $\frac{1}{9}$
(iii) (n) For ench win, in participant gets ₹ 10, but if he/sho loses, hedshe has to pay ₹ 5 to the achool. If 99 participants played, calculate how much fund couly the sehool have collocted.

OR
(iii) (b) If the same amount of ₹ 5 has been decided for winning or losing the game, then how much fund had been collected by school? (Number of participants = 99)

Use link given in description to download this PDF SOLUTIONS : $10^{\text {th }}$ CBS MATHS 2023 STANDARD SET 3 CODE 30/5/3

38 (i)
List of all the outcomes

$$
R R, R B, R G, G R, G B, G G, Y R, Y B, Y G \text { (} 9 \text { outcome) }
$$

(ii) $P($ making purple $)=\frac{n \text { (Fou. outcomes) }}{n \text { (Total) }}=\frac{1}{9}$ Ans.

$$
\text { Fave. outcomes }=R B
$$

(iii) Is participants play the game
so no of possithe winners $=\frac{1}{9} \times 99=11$.

$$
\text { L losers }=\frac{8}{9} \times 99=88
$$

amount (possible) which, school could collect

$$
\begin{aligned}
& =88 \times 5-11 \times 10 \\
& =440-110 \\
& =330 \mathrm{Rs}
\end{aligned}
$$

* This question is not appropriate, amount must be written as possible amount.
(iii) $b \quad 5$ for win, 5 for lose
so possible amount
(which could be collected)

$$
\begin{aligned}
& =5 \times \text { no of losers }-5 \times \text { no of winners } \\
& =5 \times 88-5 \times 11 \\
& =440-55 \\
& =385
\end{aligned}
$$

